CSC 344 - Algorithms and Complexity

Lecture \#1 - Review of Mathematical Induction

Proof by Mathematical Induction

- Many results in mathematics are claimed true for every positive integer.
- Any of these results could be checked for a specific value of $n(e . g ., 1,2,3, .$.$) but it would$ be impossible to check every possible case. For example, let Sn represent the statement that the sum of the first n positive integers is

Proof by Mathematical Induction, (continued)

- Let S_{n} represent the statement that the sum of the first n positive integers is $\mathrm{n}(\mathrm{n}+1) / 2$

$$
S_{n}: \quad 1+2+3+\cdots+n=\frac{n(n+1)}{2}
$$

If $n=1$, then S_{1} is $\quad 1=\frac{1(1+1)}{2}, \quad$ which is true.
If $n=2$, then S_{2} is $1+2=\frac{2(2+1)}{2}, \quad$ which is true.

If $n=3$, then S_{3} is $1+2+3=\frac{3(3+1)}{2}$, which is true.
If $n=4$, then S_{4} is $1+2+3+4=\frac{4(4+1)}{2}$, which is true.

Proof by Mathematical Induction, (continued)

- Continuing in this way for any amount of time would still not prove that Sn is true for every positive integer value of n.
- To prove that such statements are true for every positive integer value of n, the principle shown on the following slide is often used.

Principle of Mathematical Induction

- Let S_{n} be a statement concerning the positive integer n . Suppose that
$-1 . S_{1}$ is true;
-2 . for any positive integer $k, k \leq n$, if S_{k} is true, then $\mathrm{S}_{\mathrm{k}+1}$ is also true.
- Then S_{n} is true for every positive integer value of n .

Principle of Mathematical Induction (continued)

- By assumption (1), the statement is true when $\mathrm{n}=1$.
- By assumption (2), the fact that the statement is true for $\mathrm{n}=1$ implies that it is true for $\mathrm{n}=1+1=2$.
- Using (2) again, the statement is thus true for $2+1=$ 3 , for $3+1=4$, for $4+1=5$, etc.
- Continuing in this way shows that the statement must be true for every positive integer.

How Does Mathematical Induction Work?

How To Prove by Mathematical Induction

- Step 1
- Prove that the statement is true for $\mathrm{n}=1$.
- Step 2
- Show that, for any positive integer $k, k \leq n$, if S_{k} is true, then $\mathrm{S}_{\mathrm{k}+1}$ is also true.

Example 1 - Proving An Equality Statement

Let S_{n} represent the statement

$$
1+2+3+\cdots+n=\frac{n(n+1)}{2}
$$

Prove that S_{n} is true for every positive integer n.

Solution

Step 1 Show that the statement is true when

$$
n=1 \text {. If } n=1, S_{1} \text { becomes }
$$

$1=\frac{1(1+1)}{2}$, which is true.

Example 1 - Proving An Equality Statement

Step 2 Show that S_{k} implies S_{k+1}, where S_{k} is the statement
$1+2+3+\cdots+k=\frac{k(k+1)}{2}$, and S_{k+1} is the statement
$1+2+3+\cdots+k+(k+1)=\frac{(k+1)[(k+1)+1]}{2}$.

Example 1 - Proving An Equality Statement

Step 2 Start with S_{k} and assume it is a true statement.
$1+2+3+\cdots+k=\frac{k(k+1)}{2}$,
Add $k+1$ to both sides of this equation to obtain S_{k+1}.
$1+2+3+\cdots+k+(k+1)=\frac{k(k+1)}{2}+(k+1)$

Example 1 - Proving An Equality Statement

$$
\begin{aligned}
& \text { Step 2 } \\
& \begin{aligned}
1 & +2+3+\cdots+k+(k+1)=\frac{k(k+1)}{2}+(k+1) \\
& =(k+1)\left(\frac{k}{2}+1\right) \quad \text { Factor out } k+1 . \\
& =(k+1)\left(\frac{k+2}{2}\right) \quad \text { Add inside the parentheses. } \\
& =\frac{(k+1)[(k+1)+1]}{2} \text { Multiply; } k+2=(k+1)+1 .
\end{aligned}
\end{aligned}
$$

Example 1 - Proving An Equality Statement

- This final result is the statement for $\mathrm{n}=\mathrm{k}+1$; it has been shown that if S_{k} is true, then S_{k+1} is also true.
- The two steps required for a proof by mathematical induction have been completed, so the statement S_{n} is true for every positive integer value of n.

Prove By Mathematical Induction

- Please note that the left side of the statement S_{n} always includes all the terms up to the nth term, as well as the nth term.

Example 2 - Proving An Inequality Statement

Prove: If x is a real number between 0 and 1 , then for every positive integer n,

$$
0<x^{n}<1
$$

Solution

Step 1 Here S_{1} is the statement
if $0<x<1$, then $0<x^{1}<1$, which is true.

Example 2 - Proving An Inequality Statement

Step 2 Here S_{k} is the statement

$$
\text { if } 0<x<1 \text {, then } 0<x^{k}<1 .
$$

To show that this implies that S_{k+1} is true, multiply all three parts of $0<x^{k}<1$ by x to get

$$
x \times 0<x \times x^{k}<x \times 1
$$

Example 2 - Proving An Inequality Statement

Step 2 (Here the fact that $0<x$ is used.) Simplify to obtain

$$
0<x^{k+1}<x .
$$

Since $x<1$,

$$
0<x^{k+1}<x<1
$$

and thus

$$
0<x^{k+1}<1
$$

This work shows that if S_{k} is true, then S_{k+1} is true.
Since both steps for a proof by mathematical induction have been completed, the given statement is true for every positive integer n.

Generalized Principle of Mathematical Induction

- Some statements S_{n} are not true for the first few values of n, but are true for all values of n that are greater than or equal to some fixed integer j.
- The following slightly generalized form of the principle of mathematical induction takes care of these cases.

Generalized Principle of Mathematical

Induction

- Let S_{n} be a statement concerning the positive integer n. Let j be a fixed positive integer.
Suppose that
-Step $1 S_{j}$ is true;
-Step 2 for any positive integer $k, k \geq j, S_{k}$ implies S_{k+1}.
- Then S_{n} is true for all positive integers n, where n $\geq j$.

Example 3 - Using The Generalized Principle

Let S_{n} represent the statement $2^{n}>2 n+1$.
Show that S_{n} is true for all values of n such that $n \geq 3$.

Solution

Step 1 Show that S_{n} is true for $n=3$. If $n=3$, then S_{n} is
or

$$
\begin{gathered}
2^{3}>2 \times 3+1 \\
8>7
\end{gathered}
$$

Thus, S_{3} is true.

Example 3 - Using The Generalized Principle

Let S_{n} represent the statement $2^{n}>2 n+1$. Show that S_{n} is true for all values of n such that $n \geq 3$.

Solution

Step 2 Now show that S_{k} implies S_{k+1}, where $k \geq 3$, and where

$$
S_{k} \text { is } 2^{k}>2 k+1,
$$

and $\quad S_{k+1}$ is $2^{k+1}>2(k+1)+1$.

Example 3 - Using The Generalized Principle

Step 2

Multiply both sides of $2^{k}>2 k+1$ by 2 , obtaining $2 \times 2^{k}>2(2 k+1)$

$$
2^{k+1}>4 k+2
$$

Rewrite $4 k+2$ as $2 k+2+2 k=2(k+1)+2 k$.

$$
\begin{equation*}
2^{k+1}>2(k+1)+2 k \tag{1}
\end{equation*}
$$

Since k is a positive integer greater than 3 ,

$$
\begin{equation*}
2 k>1 . \tag{2}
\end{equation*}
$$

Example 3 - Using The Generalized Principle

Step 2

Adding $2(k+1)$ to both sides of inequality
(2) gives

$$
\begin{equation*}
2(k+1)+2 k>2(k+1)+1 . \tag{3}
\end{equation*}
$$

From inequalities (1) and (3),
or

$$
\begin{aligned}
2^{k+1}> & 2(k+1)+2 k>2(k+1)+1, \\
& 2^{k+1}>2(k+1)+1, \quad \text { as required. }
\end{aligned}
$$

Example 3 - Using The Generalized Principle

Step 2

Thus, S_{k} implies S_{k+1}, and this, together with the fact that S_{3} is true, shows that S_{n} is true for every positive integer value of n greater than or equal to 3 .

Example 4 - Sum of Odd Integers

- Proposition: $1+3+\ldots+(2 n-1)=n 2$ for all integers $\mathrm{n} \geq 1$.
- Proof (by induction):

1. Basis step:

The statement is true for $n=1: 1=12$.
2. Inductive step:

Assume the statement is true for some $\mathrm{k} \geq 1$
(inductive hypothesis)
show that it is true for $\mathrm{k}+1$.

Example 4 - Sum of Odd Integers (continued)

The statement is true for k :

$$
\begin{equation*}
1+3+\ldots+(2 \mathrm{k}-1)=\mathrm{k}^{2} \tag{1}
\end{equation*}
$$

We need to show it for $\mathrm{k}+1$:

$$
\begin{equation*}
1+3+\ldots+(2(k+1)-1)=(k+1)^{2} \tag{2}
\end{equation*}
$$

Showing (2):

$$
\begin{aligned}
1+3+\ldots & +(2(\mathrm{k}+1)-1)=1+3+\ldots+(2 \mathrm{k}+1) \\
& =1+3+\ldots+(2 \mathrm{k}-1)+(2 \mathrm{k}+1) \\
& =\mathrm{k}^{2}+(2 \mathrm{k}+1) \\
& =(\mathbf{k}+\mathbf{1})^{2}
\end{aligned}
$$

We proved the basis and inductive steps, so we conclude that the given statement true.

Example 5 - The Geometric Series

- Any sum of the form: $1+r+r^{2}+r^{3}+\ldots+r^{n}$ is called a Geometric Series.
- Thus, $1+2+4+8+16+\ldots+2^{\mathrm{n}}$ is a geometric series.
- To find the sum of this series, consider:

So

$$
\mathrm{S}=1+r+r^{2}+r^{3}+\ldots+r^{n} .
$$

and
$(1-r) \mathrm{S}=1-r^{(n+1)}$

- Therefore, $1+r+r^{2}+\ldots+r^{n}=\frac{1-r^{n+1}}{1-r}$

Proof of the Geometric Series

- Prove: $1+r+r^{2}+\ldots+r^{n}=\left[r^{(n+1)}-1\right] /(r-1)$
- Proof: (by Induction)
- Basis: Show true for $\mathrm{n}=0$:

LHS = 1

$$
\text { RHS }=\frac{r^{(0+1)}-1}{r-1}=\frac{r-1}{r-1}=1
$$

- Therefore LHS = RHS

Proof of the Geometric Series (continued)

- Induction:

Assume $1+r+r^{2}+\ldots+r^{k}=\frac{r^{k+1}-1}{r-1}$

- Show:

$$
1+r+r^{2}+\ldots+r^{k}+r^{k+1}=\frac{r^{k+2}-1}{r-1}
$$

- Now:

$$
\begin{aligned}
1+r & +r^{2}+\ldots+r^{k}+r^{k+1} \\
& =\frac{r^{k+1}-1}{r-1}+r^{k+1}
\end{aligned}
$$

Proof of the Geometric Series (continued)

$$
\begin{aligned}
1+r & +r^{2}+\ldots+r^{k}+r^{k+1} \\
& =\frac{r^{k+1}-1+r^{k+1}}{r-1} \\
& =\frac{r^{k+1}-1+(r-1) r^{k+1}}{r-1} \\
& =\frac{r^{k+1}-1+r \cdot r^{k+1}-r^{k+1}}{r-1} \\
& =\frac{r^{k+2}-1}{r-1}
\end{aligned}
$$

QED

Divisibility Property

- Proposition: For any integer $n \geq 1$, $7^{n}-2^{n}$ is divisible by $5 . \quad(\mathrm{P}(\mathrm{n}))$
- Proof (by induction):

1. Basis:

The statement is true for $n=1: \quad(\mathrm{P}(1))$ $7^{1}-2^{1}=7-2=5$ is divisible by 5 .

Divisibility Property (continued)

- We are given that
$P(k)$:

$$
\begin{equation*}
7^{k}-2^{k} \text { is divisible by } 5 \tag{1}
\end{equation*}
$$

Then

$$
7^{k}-2^{k}=5 a \text { for some } a \in \mathbf{Z} .
$$

(by definition)

Divisibility Property (continued)

- We need to show:
$P(k+1)$:
$7^{k+1}-2^{k+1}$ is divisible by 5.
$7^{k+1}-2^{k+1}$
$=7 \cdot 7^{k}-2 \cdot 2^{k}=5 \cdot 7^{k}+2 \cdot 7^{k-2} \cdot 2^{k}$
$=5 \cdot 7^{k}+2 \cdot\left(7^{k}-2^{k}\right)=5 \cdot 7^{k}+2 \cdot 5 a$
(by (2))
$=5 \cdot\left(7^{k}+2 a\right)$ which is divisible by 5 .
(by def.)
Thus, $P(n)$ is true by induction.

Two Proofs to Try

$$
\sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

$$
\sum_{i=0}^{n}(2 i+1)^{2}=\frac{(n+1)(2 n+1)(2 n+3)}{3}
$$

