CSC 344 – Algorithms and Complexity

Lecture #1 – Review of Mathematical Induction

Proof by Mathematical Induction

- Many results in mathematics are claimed true for every positive integer.
- Any of these results could be checked for a specific value of n (e.g., 1, 2, 3, ..) but it would be impossible to check every possible case. For example, let Sn represent the statement that the sum of the first n positive integers is

Proof by Mathematical Induction, (continued)

• Let S_n represent the statement that the sum of the first *n* positive integers is n(n+1)/2

$$S_n: 1+2+3+\cdots+n=\frac{n(n+1)}{2}$$

If n = 1, then S_1 is $1 = \frac{1(1+1)}{2}$, which is true. If n = 2, then S_2 is $1+2 = \frac{2(2+1)}{2}$, which is true. If n = 3, then S_3 is $1+2+3 = \frac{3(3+1)}{2}$, which is true. If n = 4, then S_4 is $1+2+3+4 = \frac{4(4+1)}{2}$, which is true.

- Continuing in this way for any amount of time would still not prove that Sn is true for every positive integer value of n.
- To prove that such statements are true for every positive integer value of n, the principle shown on the following slide is often used.

- Let S_n be a statement concerning the positive integer n. Suppose that
 - $-1. S_1$ is true;
 - 2. for any positive integer k, $k \le n$, if S_k is true, then S_{k+1} is also true.
- Then S_n is true for every positive integer value of n.

- By assumption (1), the statement is true when n = 1.
- By assumption (2), the fact that the statement is true for n = 1 implies that it is true for n = 1 + 1 = 2.
- Using (2) again, the statement is thus true for 2 + 1 = 3, for 3 + 1 = 4, for 4 + 1 = 5, etc.
- Continuing in this way shows that the statement must be true for every positive integer.

How To Prove by Mathematical Induction

- Step 1
 - Prove that the statement is true for n = 1.
- Step 2
 - Show that, for any positive integer k, $k \le n$, if S_k is true, then S_{k+1} is also true.

Example 1 - Proving An Equality Statement
Step 2

$$1+2+3+\dots+k+(k+1) = \frac{k(k+1)}{2} + (k+1)$$

 $= (k+1)\left(\frac{k}{2}+1\right)$ Factor out $k+1$.
 $= (k+1)\left(\frac{k+2}{2}\right)$ Add inside the parentheses.
 $= \frac{(k+1)[(k+1)+1]}{2}$ Multiply; $k+2 = (k+1)+1$.

Prove By Mathematical Induction

• Please note that the left side of the statement $S_n \underline{always}$ includes all the terms up to the nth term, as well as the nth term.

Generalized Principle of Mathematical Induction

- Some statements *S_n* are not true for the first few values of *n*, but are true for all values of *n* that are greater than or equal to some fixed integer *j*.
- The following slightly generalized form of the principle of mathematical induction takes care of these cases.

Generalized Principle of Mathematical Induction

- Let S_n be a statement concerning the positive integer n. Let j be a fixed positive integer.
 Suppose that
 - *Step 1* S_i is true;
 - Step 2 for any positive integer k, $k \ge j$, S_k implies S_{k+1} .
 - Then S_n is true for all positive integers *n*, where $n \ge j$.

Example 3 - Using The Generalized Principle Step 2 Multiply both sides of $2^k > 2k + 1$ by 2, obtaining $2 \times 2^k > 2(2k + 1)$ $2^{k+1} > 4k + 2$. Rewrite 4k + 2 as 2k + 2 + 2k = 2(k + 1) + 2k. $2^{k+1} > 2(k + 1) + 2k$ (1) Since k is a positive integer greater than 3, 2k > 1. (2)

Example 3 - Using The Generalized Principle Step 2 Adding 2(k + 1) to both sides of inequality (2) gives 2(k + 1) + 2k > 2(k + 1) + 1. (3) From inequalities (1) and (3), $2^{k+1} > 2(k + 1) + 2k > 2(k + 1) + 1$, or $2^{k+1} > 2(k + 1) + 1$, as required. Example 3 - Using The Generalized Principle

Step 2

Thus, S_k implies S_{k+1} , and this, together with the fact that S_3 is true, shows that S_n is true for every positive integer value of *n* greater than or equal to 3.

Example 4 - Sum of Odd Integers

- Proposition: 1 + 3 + ... + (2n-1) = n2for all integers $n \ge 1$.
- Proof (by induction):
 - 1. Basis step:

The statement is true for n=1: 1=12.

2. Inductive step:

Assume the statement is true for some $k \ge 1$

(*inductive hypothesis*)

show that it is true for k+1.

Two Proofs to Try

$$\sum_{i=1}^{n} i^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

$$\sum_{i=0}^{n} (2i+1)^{2} = \frac{(n+1)(2n+1)(2n+3)}{3}$$