## CSC 273 – Data Structures

Lecture 6 - Faster Sorting Methods

#### Merge Sort

- Divides an array into halves
- Sorts the two halves,
  - Then merges them into one sorted array.
- The algorithm for merge sort is usually stated recursively.
- Major programming effort is in the merge process





### **Recursive Merge Sort**

Algorithm mergeSort(a, tempArray, first, last)
// Sorts the array entries a[first] through a[last] recursively.
if (first < last)
if (first < last)
if mid = approximate midpoint between first and last
mergeSort(a, tempArray, first, mid)
mergeSort(a, tempArray, mid + 1,last)
Merge the sorted halves a[first..mid] and a[mid + 1..last] using the array tempArray
}
Recursive algorithm for merge sort</pre>











# Iterative Merge Sort

- Less simple than recursive version.
  Need to control the merges.
- Will be more efficient of both time and space.
  - But, trickier to code without error.

### Iterative Merge Sort

- Starts at beginning of array
  - Merges pairs of individual entries to form two-entry subarrays
- Returns to the beginning of array and merges pairs of the two-entry subarrays to form four-entry subarrays
  - And so on
- After merging all pairs of subarrays of a particular length, might have entries left over





# Quick Sort

- When pivot chosen, array rearranged such that:
  - Pivot is in position that it will occupy in final sorted array
  - Entries in positions before pivot are less than or equal to pivot
  - Entries in positions after pivot are greater than or equal to pivot

















#### Algorithm partition(a, first, last)

// Partitions an array a[first..last] as part of quick sort into two subarrays named

- // Smaller and Larger that are separated by a single entry—the pivot—named pivotValue.
- // Entries in Smaller are <= pivotValue and appear before pivotValue in the array.
- // Entries in Larger are >= pivotValue and appear after pivotValue in the array.
- // first >= 0; first < a.length; last first >= 3; last < a.length.</pre>
- // Returns the index of the pivot.

#### mid = index of the array's middle entry

- sortFirstMiddleLast(a, first, mid, last)
- // Assertion: a[mid] is the pivot, that is, pivotValue;
- // a[first] <= pivotValue and a[last] >= pivotValue, so do not compare these two
- // arrav entries with pivotValue.

// Move pivotValue to next-to-last position in array AutoFinds production provide programmer from the superior production production of production of production of p





















| Radix sort $O(n)$ $O(n)$ $O(n)$ Merge sort $O(n \log n)$ $O(n \log n)$ $O(n \log n)$ Quick sort $O(n \log n)$ $O(n \log n)$ $O(n^2)$                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quick sort $O(n \log n)$ $O(n \log n)$ $O(n^2)$ Shell sort $O(n^{1.5})$ $O(n)$ $O(n^2)$ or $O(n^1)$ Insertion sort $O(n^2)$ $O(n)$ $O(n^2)$ Selection sort $O(n^2)$ $O(n^2)$ $O(n^2)$ |

| п                | 10     |          | $10^{2}$ | 1               |                  |
|------------------|--------|----------|----------|-----------------|------------------|
| $n \log_2 n$     | 33     |          | 664      | 98              |                  |
| $n^{1.5}$        | 32     |          | $10^{3}$ |                 |                  |
| $n^2$            | $10^2$ |          | $10^{4}$ |                 |                  |
| $\frac{5}{10^3}$ |        | $10^{4}$ |          | 10 <sup>5</sup> | 10 <sup>6</sup>  |
| 9966             |        | 132,877  | 7        | 1,660,964       | 19,931,569       |
| 31,62            | 3      | $10^{6}$ |          | 31,622,777      | 109              |
| 106              |        | $10^{8}$ |          | $10^{10}$       | 10 <sup>12</sup> |