
CSC 273 – Data Structures

Lecture 6 - Faster Sorting Methods

Merge Sort

• Divides an array into halves

• Sorts the two halves,

– Then merges them into one sorted array.

• The algorithm for merge sort is usually

stated recursively.

• Major programming effort is in the merge

process

Merging Arrays

Merging two sorted arrays into one sorted array

Recursive Merge Sort

The major steps in a merge sort

Recursive Merge Sort

Recursive algorithm for merge sort

Recursive Merge Sort

Pseudocode which describes the merge step

Recursive Merge Sort

Pseudocode which describes the merge step

Recursive Merge Sort

The effect of the recursive calls and the merges during a merge sort

Recursive Merge Sort

Efficiency of Merge Sort

A worst-case merge of two sorted arrays - efficiency is O(n log n)

Iterative Merge Sort

• Less simple than recursive version.

– Need to control the merges.

• Will be more efficient of both time and

space.

– But, trickier to code without error.

Iterative Merge Sort

• Starts at beginning of array

– Merges pairs of individual entries to form two-entry

subarrays

• Returns to the beginning of array and merges pairs

of the two-entry subarrays to form four-entry

subarrays

– And so on

• After merging all pairs of subarrays of a particular

length, might have entries left over

Merge Sort in the Java Class Library

• Class Arrays in the package java.util

defines versions of a static method sort

Quick Sort

• Divides an array into two pieces

– Pieces are not necessarily halves of the array

– Chooses one entry in the array—called the

pivot

• Partitions the array

Quick Sort

• When pivot chosen, array rearranged such

that:

– Pivot is in position that it will occupy in final

sorted array

– Entries in positions before pivot are less than or

equal to pivot

– Entries in positions after pivot are greater than

or equal to pivot

Quick Sort

Algorithm that describes our sorting strategy:

Quick Sort

• Quick sort is O(n log n) in average case,

O(n2) in worst case.

• Choice of pivots affects behavior

Creating the Partition

A partitioning strategy for quick sort

Creating the Partition

A partitioning strategy for quick sort

Creating the Partition

A partitioning strategy for quick sort

Creating the Partition

Median-of-three pivot selection:

(a) The original array

(b) The array with its first, middle, and last

entries sorted

Adjusting the Partition Algorithm

a) The array with its first, middle, and last entries sorted

b) The array after positioning the pivot and just before partitioning

Adjusting the Partition Algorithm

Adjusting the Partition Algorithm

Adjusting the Partition Algorithm

Adjusting the Partition Algorithm

The Quick Sort Method

Quick Sort in the Java Class Library

Class Arrays in the package java.util uses a quick

sort to sort arrays of primitive types into ascending order

Radix Sort

• Does not use comparison

• Treats array entries as if they were strings

that have the same length.

− Group integers according to their rightmost

character (digit) into “buckets”

− Repeat with next character (digit), etc.

Radix Sort

Original array and buckets after first distribution

Radix Sort

Reordered array and buckets after second distribution

Radix Sort

Reordered array and buckets after third distribution

Sorted array

Pseudocode for Radix Sort

Radix sort is an O(n) algorithm for certain data,

it is not appropriate for all data

Comparing the Algorithms

The time efficiency of various sorting algorithms,

expressed in Big Oh notation

Comparing the Algorithms

A comparison of growth-rate functions as n increases

