
CSC 273 – Data Structures

Lecture 5 - Introduction to Sorting

The Interface Comparable

• Consider the method compareTo for class

String

• if s and t are strings, s.compareTo(t) is

– Negative if s comes before t

– Zero if s and t are equal

– Positive if s comes after t

The Interface Comparable

• By invoking compareTo, you compare

two objects of the class T.

The Interface Comparable

• By invoking compareTo, you compare

two objects of the class T.

public class Circle implements Comparable<Circle> {

private double radius;

//Constructors and methods go here

… …

}

public int compareTo(Circle other) {

int result;

if (this.equals(other))

result = 0;

else if (radius < other.radius)

result = -1;

else

result = 1;

return result;

}

Generic Methods – An Example

public class Example {

public static <T> void displayArray

(T[] anArray) {

for (T arrayEntry : anArray) {

System.out.print(arrayEntry);

System.out.print(' ');

}

System.out.println();

}

public static void main(String[] args) {

String[] stringArray

= {"apple", "banana", "carrot",

"dandelion"};

System.out.print("stringArray contains ");

displayArray(stringArray);

Character[] characterArray

= {'a', 'b', 'c', 'd'};

System.out.print("characterArray contains ");

displayArray(characterArray);

}

}

Output

stringArray contains apple banana carrot dandelion

characterArray contains a b c d

Bounded Type Parameters

Consider this simple class of squares:

Bounded Type Parameters

Note the different types of square objects possible

Bounded Type Parameters

Imagine that we want to write a static method

that returns the smallest object in an array.

Suppose that we wrote our method:

Bounded Type Parameters

The header should look like this:

Wildcards

• Question mark, ?, is used to represent an

unknown class type

– Referred to as a wildcard

• Consider following method and objects

Wildcards

• Method displayPair will accept as an

argument a pair of objects whose data type

is any one class

Bounded Wildcards

• The class Gadget

is derived from the

class Widget,

which implements

the interface
Comparable

Sorting

• We seek algorithms to arrange items, ai

such that

entry 1 ≤ entry 2 ≤ . . . ≤ entry n

• Sorting an array is usually easier than

sorting a chain of linked nodes

• Efficiency of a sorting algorithm is

significant

Selection Sort

Before and after exchanging the

shortest book and the first book

Selection Sort

A selection sort of an array of integers into ascending order

Iterative Selection Sort

SelectionSort

// Sorts the first n objects in an array

// into ascending order.

// @param a An array of Comparable objects.

// @param n An integer > 0. */

public static <T extends Comparable<? super T>>

void selectionSort(T[] a, int n) {

for (int index = 0; index < n - 1; index++) {

int indexOfNextSmallest =

getIndexOfSmallest(a, index, n - 1);

swap(a, index, indexOfNextSmallest);

// Assertion: a[0] <= a[1] <= . . . <=

// a[index] <= all other a[i]

}

}

// Finds the index of the smallest value in a

// portion of an array a.

// Precondition: a.length > last >= first >= 0.

// Returns the index of the smallest value among

// a[first], a[first + 1], . . . , a[last].

private static <T extends Comparable<? super T>>

int getIndexOfSmallest(T[] a, int first,

int last) {

T min = a[first];

int indexOfMin = first;

for (int index = first + 1; index <= last;

index++) {

if (a[index].compareTo(min) < 0) {

min = a[index];

indexOfMin = index;

} // end if

// Assertion: min is the smallest of

// a[first] through a[index].

} // end for

return indexOfMin;

} // end getIndexOfSmallest

Recursive Selection Sort

Efficiency of Selection Sort

• Selection sort is O(n2) regardless of the

initial order of the entries.

– Requires O(n2) comparisons

– Does only O(n) swaps

Insertion Sort

The placement of the third

book during an insertion sort

Insertion Sort

An insertion sort of books

Iterative Insertion Sort

Iterative algorithm describes an insertion sort of the

entries at indices first through last of the array a

Iterative Insertion Sort

Pseudocode of method, insertInOrder,

to perform the insertions.

insertionSort()

// insertionSort() – The Driving method

public static <T extends Comparable<? super T>>

void insertionSort(T[] a, int n) {

insertionSort(a, 0, n - 1);

} // end insertionSort

insertionSort()

// insertionSort() – the iterative method

public static <T extends Comparable<? super T>>

void insertionSort(T[] a, int first,

int last) {

for (int unsorted = first + 1;

unsorted <= last; unsorted++) {

// Assertion: a[first] <= a[first + 1]

<= ... <= a[unsorted - 1]

T firstUnsorted = a[unsorted];

insertInOrder(firstUnsorted, a, first,

unsorted - 1);

}

}

Iterative Insertion Sort

Inserting the next unsorted entry into its proper location

within the sorted portion of an array during an insertion sort

Iterative Insertion Sort

An insertion sort of an array of integers into ascending order

Recursive Insertion Sort

This pseudocode describes a recursive insertion sort.

Recursive Insertion Sort

public static <T extends Comparable<? super T>>

void insertionSort(T[] a, int first,

int last) {

if (first < last) {

insertionSort(a, first, last-1);

insertInOrder(a[last], a, first, last -1);

}

}

Recursive Insertion Sort

First draft of insertInOrder algorithm.

Recursive Insertion Sort

Inserting the first unsorted entry into the sorted portion of the array.

The entry is greater than or equal to the last sorted entry

Recursive Insertion Sort

Inserting the first unsorted entry into the sorted portion of the array.

The entry is smaller than the last sorted entry

Recursive Insertion Sort

The algorithm insertInOrder: final draft.

Note: insertion sort efficiency (worst case) is O(n2)

Insertion Sort of a

Chain of Linked Nodes

A chain of integers sorted into ascending order

Insertion Sort of a Chain of Linked

Nodes

During the traversal of a chain to locate the insertion point,

save a reference to the node before the current one

Insertion Sort of a Chain of Linked

Nodes

Breaking a chain of nodes into two pieces as the first step in an

insertion sort:

(a) the original chain; (b) the two pieces

Insertion Sort of a Chain of Linked

Nodes

Add a sort method to a class LinkedGroup that

uses a linked chain to represent a certain collection

Insertion Sort of a Chain of Linked

Nodes

This class has an inner class Node that has set and get methods

Insertion Sort of a Chain of Linked

Nodes

This class has an inner class Node that has set and get methods

Insertion Sort of a Chain of Linked

Nodes

The method to perform the insertion sort.

Shell Sort

• Algorithms seen so far are simple but

inefficient for large arrays at O(n2)

• Note, the more sorted an array is, the less

work insertInOrder must do

• Improved insertion sort developed by

Donald Shell

Shell Sort

An array and the subarrays formed by

grouping entries whose indices are 6 apart

Shell Sort

The subarrays after each is sorted,

and the array that contains them

Shell Sort

The subarrays of the array formed by

grouping entries whose indices are 3 apart

The subarrays after each is sorted,

and the array that contains them

Shell Sort

Algorithm that sorts array entries whose indices

are separated by an increment of space.

Shell Sort

Algorithm to perform a Shell sort will invoke incrementalInsertionSort

and supply any sequence of spacing factors. Efficiency (worst) can be O(n1.5)

Comparing the Algorithms

The time efficiencies of three sorting

algorithms, expressed in Big Oh notation

