
CSC 273 – Data Structures

Lecture 4- Recursion

What Is Recursion?

• Consider hiring a contractor to build

– He hires a subcontractor for a portion of the job

– That subcontractor hires a sub-subcontractor to

do a smaller portion of job

• The last sub-sub- … subcontractor finishes

– Each one finishes and reports “done” up the

line

Example: The Countdown

Counting down from 10

Example: The Countdown

Counting down from 10

Example: The Countdown

Counting down from 10

Recursive countdown()

public static void countDown(int integer) {

System.out.println(integer);

if (integer > 1)

countDown(integer - 1);

}

Definition

• Recursion is a problem-solving process

– Breaks a problem into identical but smaller

problems.

• A method that calls itself is a recursive

method.

– The invocation is a recursive call or recursive

invocation.

Design Guidelines

• Method must be given an input value

• Method definition must contain logic that

involves this input, leads to different cases

• One or more cases should provide solution

that does not require recursion

– Else infinite recursion

• One or more cases must include a recursive

invocation

Programming Tip

• Iterative method contains a loop

• Recursive method calls itself

• Some recursive methods contain a loop and

call themselves

– If the recursive method with loop uses while,

make sure you did not mean to use an if

statement

Tracing a Recursive Method

The effect of the method call countDown(3)

Tracing a Recursive Method

The stack of activation records during

the execution of the call countDown(3)

Tracing a Recursive Method

The stack of activation records during

the execution of the call countDown(3)

Stack of Activation Records

• Each call to a method generates an activation

record

• Recursive method uses more memory than an

iterative method

– Each recursive call generates an activation

record

• If recursive call generates too many activation

records, could cause stack overflow

Recursive Methods That Return a Value

public static void countDown(int integer) {

System.out.println(integer);

if (integer > 1)

countDown(integer - 1);

}

Recursive method to calculate

Tracing a Recursive Method

Tracing the execution of sumOf(3)

Tracing a Recursive Method

Tracing the execution of sumOf(3)

Recursively Processing an Array

// Displays the integers in an array.

// Array – an array of integers

// first - the index of the first element

// displayed

// last – the index of the last element display

// 0 <= first <= last < array.length

public static void displayArray

(int [] array, int first, int last)

Given definition of a recursive method to display array

Recursively Processing an Array

public static void displayArray

(int [] array, int first, int last) {

System.out.print(array[first] + " ");

if (first < last)

displayArray(array, first + 1, last);

}

Starting with array[first]

Recursively Processing an Array

public static void displayArray

(int [] array, int first, int last) {

if (first < last)

displayArray(array, first, last - 1);

System.out.print(array[last] + " ");

}

Starting with array[last]

Recursively

Processing an Array

Two arrays with their middle elements within their left halves

Recursively Processing an Array

public static void displayArray

(int array[], int first, int last) {

if (first == last)

System.out.print(array[first] + " ");

else {

int mid = (first + last) / 2;

displayArray(array, first, mid);

displayArray(array, mid + 1, last);

}

}

Processing array from middle

Displaying a bag

/*

* display() - displays the contents of an array

* bag using the recursive method

* displayArray

*/

public void display() {

displayArray(0, numberOfEntries - 1);

}

private void displayArray(int first,int last) {

System.out.println(bag[first]);

if (first < last)

displayArray(first + 1, last);

}

Recursively Processing

a Linked Chain

Display data in first node and recursively

display data in rest of chain.

Recursively Processing

a Linked Chain

Displaying a chain backwards. Traversing chain of linked

nodes in reverse order easier when done recursively.

Time Efficiency

of Recursive Methods

Using proof by induction, we conclude method is O(n)

Time Efficiency of Computing xn

Efficiency of algorithm is O(log n)

Simple Solution to a

Difficult Problem

The initial configuration of the

Towers of Hanoi for three disks.

Simple Solution to a

Difficult Problem

Rules:

1. Move one disk at a time. Each disk moved

must be topmost disk.

2. No disk may rest on top of a disk smaller

than itself.

3. You can store disks on the second pole

temporarily, as long as you observe the

previous two rules.

The sequence of

moves for solving the

Towers of Hanoi

problem with three

disks

The sequence of

moves for solving the

Towers of Hanoi

problem with three

disks

Solutions

Recursive algorithm to solve any number of disks.

Note: for n disks, solution will be 2n – 1 moves

Poor Solution to a Simple Problem

Algorithm to generate Fibonacci numbers.

Why is this inefficient?

Poor Solution to a Simple Problem

The computation of the Fibonacci number F6 using recursion

The computation of the Fibonacci number F6 using iteration.

Poor Solution

to a Simple Problem

Tail Recursion

Tail recursion

When the last action performed by

a recursive method is a recursive call

Tail Recursion

• In a tail-recursive method, the last action is

a recursive call

• This call performs a repetition that can be

done by using iteration.

• Converting a tail-recursive method to an

iterative one is usually a straightforward

process.

Indirect Recursion

• Example

– Method A calls Method B

– Method B calls Method C

– Method C calls Method A

• Difficult to understand and trace

– But does happen occasionally

Indirect Recursion

• Consider evaluation of validity of an

algebraic expression

– Algebraic expression is either a term or two

terms separated by a + or – operator

– Term is either a factor or two factors separated

by a * or / operator

– Factor is either a variable or an algebraic

expression enclosed in parentheses

– Variable is a single letter

Indirect Recursion – An Example

Replacing Recursion with

Iteration

Using a Stack

Instead of Recursion

Using a Stack

Instead of Recursion

