CSC 273 - Data Structures

Lecture 2- Efficiency of Algorithms

Why Efficient Code?

- Computers are faster, have larger memories
- So why worry about efficient code?
- And ... how do we measure efficiency?

Example - Sum of First n Values

- Consider the problem of summing

$$
\sum_{i=1}^{n} i=1+2+3+\ldots+n
$$

How would we code this?

Example - Sum of First n Values

```
Approach A
sum \(=0\);
for (i = 1; i <= n; i++)
    sum \(=\) sum \(=i ;\)
Approach B
sum \(=0\);
for (i = \(1 ;\) i \(<=n ; i++\) )
    for (j \(=1\); \(j<=i ; j++\) )
        sum \(=\) sum \(=1\);
```

Approach C
Sum $=n *(n+1) / 2$

Sum of First n Numbers

```
public static void main(String[] args) {
    long n = 10000;
    long sum = 0;
    // Algorithm A
    for (long i = 1; i<= n; i++)
        sum = sum + i;
    System.out.println("Sum is " + sum);
```

 sum \(=0\);
 // Algorithm B
 for (long \(i=1 ; i<=n ; i++\))
 for (long j = 1; \(j<=i ; j++\))
 sum \(=\) sum + 1;
 System.out.println("Sum is " + sum);
 sum \(=0\);
 // Algorithm C
 sum \(=n *(n+1) / 2 ;\)
 System.out.println("Sum is " + sum);
 \}

What is "best"?

- An algorithm has both time and space constraints - that is complexity
- Time complexity
- Space complexity
- This study is called analysis of algorithms

Counting Basic Operations

- A basic operation of an algorithm
- The most significant contributor to its total time requirement

Number of required basic operations

	Algorithm A	Algorithm B	Algorithm C
Additions	n	$n(n+1) / 2$	1
Multiplications			1
Divisions			1
Total basic operations	n	$\left(n^{2}+n\right) / 2$	$\mathbf{3}$

Counting Basic Operations

Number of basic operations required by the algorithm

Counting Basic Operations

Typical growth-rate functions evaluated at increasing values of n

| \boldsymbol{n} | $\boldsymbol{l o g}(\log \boldsymbol{n})$ | $\log \boldsymbol{n}$ | $\log ^{\mathbf{2}} \boldsymbol{n}$ | \boldsymbol{n} | $\boldsymbol{n} \log \boldsymbol{n}$ | $\boldsymbol{n}^{\mathbf{2}}$ | $\boldsymbol{n}^{\mathbf{3}}$ | $\mathbf{2}^{\boldsymbol{n}}$ | $\boldsymbol{n}!$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 10 | 2 | 3 | 11 | 10 | 33 | 10^{2} | 10^{3} | 10^{3} | 10^{5} |
| 10^{2} | 3 | 7 | 44 | 100 | 664 | 10^{4} | 10^{6} | 10^{30} | 10^{94} |
| 10^{3} | 3 | 10 | 99 | 1000 | 9966 | 10^{6} | 10^{9} | 10^{301} | 10^{1435} |
| 10^{4} | 4 | 13 | 177 | 10,000 | 132,877 | 10^{8} | 10^{12} | 10^{3010} | $10^{19,335}$ |
| 10^{5} | 4 | 17 | 276 | 100,000 | $1,660,964$ | 10^{10} | 10^{15} | $10^{30,103}$ | $10^{243,338}$ |
| 10^{6} | 4 | 20 | 397 | $1,000,000$ | $19,931,569$ | 10^{12} | 10^{18} | $10^{301,030}$ | $10^{2,933,369}$ |

Best, Worst, and Average Cases

- For some algorithms, execution time depends only on size of data set
- Other algorithms depend on the nature of the data itself
- Here we seek to know best case, worst case, average case

Big Oh Notation

- A function $f(n)$ is of order at most $g(n)$
- That is, $\mathrm{f}(\mathrm{n})$ is $\mathrm{O}(\mathrm{g}(\mathrm{n}))$-if
- A positive real number c and positive integer N exist ...
- Such that $\mathrm{f}(\mathrm{n}) \leq \mathrm{c} \times \mathrm{g}(\mathrm{n})$ for all $\mathrm{n} \geq \mathrm{N}$
- That is, $c \times g(n)$ is an upper bound on $f(n)$ when n is sufficiently large

Big Oh Notation

Big Oh Notation

The following identities hold for Big Oh notation:

$$
\begin{aligned}
& \mathrm{O}(k g(n))=\mathrm{O}(g(n)) \text { for a constant } k \\
& \mathrm{O}\left(g_{1}(n)\right)+\mathrm{O}\left(g_{2}(n)\right)=\mathrm{O}\left(g_{1}(n)+g_{2}(n)\right) \\
& \mathrm{O}\left(g_{1}(n)\right) \times \mathrm{O}\left(g_{2}(n)\right)=\mathrm{O}\left(g_{1}(n) \times g_{2}(n)\right) \\
& \mathrm{O}\left(g_{1}(n)+g_{2}(n)+\ldots+g_{m}(n)\right)=\mathrm{O}\left(\max \left(g_{1}(n), g_{2}(n), \ldots, g_{m}(n)\right)\right. \\
& \mathrm{O}\left(\max \left(g_{1}(n), g_{2}(n), \ldots, g_{m}(n)\right)=\max \left(\mathrm{O}\left(g_{1}(n)\right), \mathrm{O}\left(g_{2}(n)\right), \ldots, \mathrm{O}\left(g_{m}(n)\right)\right)\right.
\end{aligned}
$$

By using these identities and ignoring smaller terms in a growth-rate function, you can usually find the order of an algorithm's time requirement with little effort. For example, if the growth-rate function is $4 n^{2}+50 n-10$,

$$
\mathrm{O}\left(4 n^{2}+50 n-10\right)=\mathrm{O}\left(4 n^{2}\right) \text { by ignoring the smaller terms }
$$

$$
=\mathrm{O}\left(n^{2}\right) \quad \text { by ignoring the constant multiplier }
$$

Complexities of Program Constructs

Construct	Time Complexity
Consecutive program segments $S_{1}, S_{2}, \ldots, S_{k}$ whose growth-rate functions are g_{1}, \ldots, g_{k}, respectively	$\max \left(\mathrm{O}\left(g_{1}\right), \mathrm{O}\left(g_{2}\right), \ldots, \mathrm{O}\left(g_{k}\right)\right)$
An if statement that chooses between program segments S_{1} and S_{2} whose growth-rate functions are g_{1} and g_{2}, respectively	$\mathrm{O}($ condition $)+\max \left(\mathrm{O}\left(g_{1}\right), \mathrm{O}\left(g_{2}\right)\right)$
A loop that iterates m times and has a body whose growth-rate function is g	$m \times \mathrm{O}(g(n))$

Picturing Efficiency - O(n)

Picturing Efficiency $-\mathrm{O}\left(\mathrm{n}^{2}\right)$

```
    for i = 1 to n
        sum = sum + 1
*
=x
\[
=x \in x
\]
```

Picturing Efficiency $-\mathrm{O}\left(\mathrm{n}^{2}\right)$

Effect of Doubling the Problem Size

Growth-Rate Function for Size \boldsymbol{n} Problems	Growth-Rate Function for Size $\mathbf{2} \boldsymbol{n}$ Problems	Effect on Time Requirement
1	1	None
$\log n$	$1+\log n$	Negligible
n	$2 n$	Doubles
$n \log n$	$2 n \log n+2 n$	Doubles and then adds $2 n$
n^{2}	$(2 n)^{2}$	Quadruples
n^{3}	$(2 n)^{3}$	Multiplies by 8
2^{n}	$2^{2 n}$	Squares

Time Required To Process One Million Items

Growth-Rate Function \boldsymbol{g}	$\boldsymbol{g}(\mathbf{1 0} \mathbf{6}) / \mathbf{1 0}^{\mathbf{6}}$
$\log n$	0.0000199 seconds
n	1 second
$n \log n$	19.9 seconds
n^{2}	11.6 days
n^{3}	$31,709.8$ years
2^{n}	$10^{301,016}$ years

Rate is one million operations per second

Efficiency of Implementations of ADT Bag

Operation	Fixed-Size Array	Linked
add(newEntry)	$\mathrm{O}(1)$	$\mathrm{O}(1)$
remove()	$\mathrm{O}(1)$	$\mathrm{O}(1)$
remove(anEntry)	$\mathrm{O}(1), \mathrm{O}(n), \mathrm{O}(n)$	$\mathrm{O}(1), \mathrm{O}(n), \mathrm{O}(n)$
clear()	$\mathrm{O}(n)$	$\mathrm{O}(n)$
getFrequencyOf(anEntry)	$\mathrm{O}(n)$	$\mathrm{O}(n)$
contains(anEntry)	$\mathrm{O}(1), \mathrm{O}(n), \mathrm{O}(n)$	$\mathrm{O}(1), \mathrm{O}(n), \mathrm{O}(n)$
toArray()	$\mathrm{O}(n)$	$\mathrm{O}(n)$
getCurrentSize(), isEmpty()	$\mathrm{O}(1)$	$\mathrm{O}(1)$

