CSC 273 — Data Structures

Lecture 2- Efficiency of Algorithms

Why Efficient Code?

* Computers are faster, have larger memories
— So why worry about efficient code?

* And ... how do we measure efficiency?




Example — Sum of First n Values

e Consider the problem of summing
n

Zi=1+2+3+ et n
i=1

How would we code this?

Example — Sum of First n Values

Approach A

sum = 0;
for (i =1; i <= n; 1i++)
sum = sum = i;
Approach B
sum = 0;
for (i =1; i <= n; 1i++)
for (j =1; 3Jj <= 1i; j++)
sum = sum = 1;

Approach C
Sum = n * (n+l) / 2




Sum of First » Numbers

public static void main(String[] args) {
long n = 10000;
long sum = 0;

// Algorithm A
for (long i = 1; i<= n; i++)

sum = sum + i;
System.out.println("Sum is " + sum);

sum = 0;
// Algorithm B
for (long i = 1; i <= n; i++)
for (long j = 1; j <= i; Jj++)
sum = sum + 1;

System.out .println("Sum is " + sum);

sum = 0;
// Algorithm C
sum = n * (n + 1) / 2;

System.out .println("Sum is " + sum);




What 1s “best”?

* An algorithm has both time and space
constraints — that is complexity
— Time complexity

— Space complexity

e This study is called analysis of algorithms

Counting Basic Operations

A basic operation of an algorithm

— The most significant contributor to its total time
requirement

Number of required basic operations

Algorithm A Algorithm B Algorithm C
Additions n n(n+1)/2 1
Multiplications 1
Divisions 1
Total basic operations n (n2+n)/2 3




Counting Basic Operations

Number of basic operations required by the algorithm

Algorithm B:
(n*+n)i2 operations

Algorithm A:
n operations

Algorithm C: 3 operations

Number of basic operations

Counting Basic Operations

Typical growth-rate functions evaluated at increasing values of n

n log(logn) logn lngz n n nlogn n? n’ 2% n!

10 2 3 11 10 33 10 100 | 10° 10°

102 3 7 44 100 664 10 106 | 107 10%

103 3 10 | 99 1000 9966 106 10° | 1031 101435
104 4 13 177 10,000 132.877 108 1012 | 103010 1019335
10° 4 17 | 276 | 100,000 | 1,660,964 Y || i@ || dpPeE || fapeEiEs
108 4 20 | 397 | 1.000000 |19.931.569 | 10'2 1018 | 10301.030 [ 12,933,369




Best, Worst, and Average Cases

* For some algorithms, execution time
depends only on size of data set

e Other algorithms depend on the nature of
the data itself

— Here we seek to know best case, worst case,
average case

Big Oh Notation

A function f(n) is of order at most g(n)

e That is, f(n) is O(g(n))—if
— A positive real number ¢ and positive integer N
exist ...
— Such that f(n) <c x g(n) for alln > N

— That is, ¢ x g(n) 1s an upper bound on f(n) when
n is sufficiently large




Big Oh Notation

o 25 —_—

= //— cg(n)

2 p

2 // —T | fw

g 15 /

=

— I

Z 10 7

[@] /

- 1

s /)

2 3 f

) / 1

g [

> 0 I

0 5 N 10 15 20 25 30

n

Big Oh Notation

The following identities hold for Big Oh notation:

O(k g(m)) = O(g(n)) for a constant k

O(g1(m) + O(ga(m)) = O(g1 () + g2(m)

O(g1(m) x O(ga(m) = O(g1(n) x g2(n))

O(g1(n) + g2(m) + . . . + gy(n)) = O(max(g(n), £2(n), . . ., gm(1))

O(max(gy(n), g2(n), - - ., gm()) = max(0(gy (), O(gr()), - - ., O(gy(™)))
By using these identities and 1gnoring smaller terms in a growth-rate function, you can usu-
ally find the order of an algorithm’s time requirement with little effort. For example, if the
growth-rate function is 47° + 507 - 10,

O(@n? +50n - 10) = 0(4n2) by ignoring the smaller terms

- 0(n?) by 1gnoring the constant multiplier




Complexities of Program Constructs

Construct

Time Complexity

Consecutive program segments Sp. S, . . . .

growth-rate functions are gq. . . ..

Sr whose
gj.. respectively

An if statement that chooses between program segments
S; and S, whose growth-rate functions are gyand g,

respectively

A loop that iterates m times and has a body whose

growth-rate function is g

max(0(gy). O(g2). - - - . O(gp)

O(condition) + max(O(g;). O(g,))

m x O(g(n))

Picturing Efficiency — O(n)

for i = 1 fto n
sum = sum + 1
) ) -
1 2 3

O(n)

n




Picturing Efficiency — O(n?)

i
m + 1

l»a‘ u»%‘ l%‘““ﬁ
el X3

R

ol +2+ n)=0(n?

>
a

KR

3

Picturing Efficiency — O(n?)

v -

for j

el

AR
R

alalal

O(n x n)=0(n?

~ |%
A
el
o




Effect of Doubling the Problem Size

Growth-Rate Function Growth-Rate Function Effect on Time
for Size n Problems for Size 2n Problems Requirement

1 1 None
log n | + log n Negligible
n 2n Doubles
nlogn 2nlogn +2n Doubles and then adds 2n
n* (2n)? Quadruples
n (2n)3 Multiplies by 8
2n 2%n Squares

Time Required To Process One
Million Items

Growth-Rate

Function g 2(10% /10°
log n 0.0000199 seconds
n I second
nlogn 19.9 seconds
n’ 11.6 days
n’ 31,709.8 years
on 10301.016 vears

Rate is one million operations per second




Efficiency of Implementations of
ADT Bag

Operation Fixed-Size Array Linked
add (newEntry) o(1) o(1)
remove () o(1) o(1)
remove (anEntry) 0(1) 0(n), O(n)| O(1),O(n), O(n)
clear() O(n) O(n)
getFrequencyOf(anEntry) O(n) O(n)
contains(anEntry) 0O(1),0(n),O(n) | O(1),0(n),O(n)
toArray () O(n) O(n)

getCurrentSize(), isEmpty(Q) o(1) o(1)




