
1

CSC 271 - Software I: Utilities

and Internals

Lecture #11 – Objects and Classes in

Python

Recap

• Python is a general purpose interpreted language

using indentation as block delineation.

• Variables are implicitly defined, dynamically

typed and data types are dynamically bound to

variables.

• The language is case sensitive.

• Atomic data types include integer, floating point

number, Boolean and string.

• Composite data types include list, set and

dictionary.

2

Classes and Objects

• We know from our classes in object-

oriented programming that an object is a

tangible instance of a class.

• Objects encapsulate data with operations.

• Data is represented by attributes and

operations are implemented as methods.

Classes and Objects

• In pure OO languages, classes can specialize super

classes (or, alternatively phrases, super classes

generalize sub classes).

• For example:

– It is fair to say that all squares are rectangles,

and that tall rectangles are shapes.

– Rectangle is a generalization of square and

shape is a generalization of rectangle.

– Circle is also sub-class of shape, but along a

different path.

3

Classes

• Although it is completely possible to ignore it,

Python is a true object-oriented language.

• By convention, classes are named with an initial

uppercase letter.

• Methods are functions and always take a reference

to self as their first parameter. self is assigned a

value when the class is instantiated.

• In this example, the Card class contains two

methods (func1 and func2).

Card.py

#!/usr/bin/python

class Card:

""" A simple example class """

def func1(self):

""" Function 1 """

def func2(self):

""" Function 2 """

if __name__ == "__main__":

card = Card()

4

Constructors

• If a class contains instance variables, they

are defined and initialized within the

constructor.

• The constructor method is called __init__

and, in addition to self, may contain

additional parameters.

card.py

#!/usr/bin/python

class Card:

""" A simple example class """

def __init__(self, suit, value):

""" the constructor method sets

up instances by

initializing initial vale to

instance variables."""

self.suit = suit

self.value = value

if __name__ == "__main__":

card = Card("hearts", 2)

5

Class Variables

• Class variables are variables that are shared

by all instances of the class.

– Other languages refer to them as static

variables.

• All variables defined in a class, but outside

a function, are class variables.

card2.py

#!/usr/bin/python

class Card:

""" A simple example class """

Class variables

suits = ["hearts", "clubs", "spades",\

"diamonds"]

jack = 11

queen = 12

king =13

ace = 14

6

""" the constructor method sets up

instances by initializing initial

value to instance variables."""

self.suit = suit

self.value = value

if __name__ == "__main__":

card = Card("hearts", Card.ace)

Visibility of variables

• Python does not have built-in for visibility

modifiers.

– As such, it is not possible to define a variable as

private.

• However, by convention, all names that

start with single underscore (_) should be

considered private.

• This applies to functions, as well as

variables.

7

card3.py

!/usr/bin/python

class Card:

""" A simple example class """

Class variables

suits = ["hearts", "clubs", "spades", \

"diamonds"]

jack = 11

queen = 12

king =13

ace = 14

card3.py

_values = {2: "two", 3: "three",

4: "four", 5:"five", 6: "six",

7: "seven", 8: "eight",

9: "nine", 10: "ten",

11: "jack", 12: "queen",

13:"king", 14:"ace" }

def __init__(self, suit, value):

""" the constructor method sets

up instances by

initializing initial value to

instance variables."""

self.suit = suit

self.value = value

8

Functions

• There is nothing special about functions in a class.

– They behave exactly the same as other

functions.

– The only difference is that self must be defined

as the first argument to the function.

– When calling the function, it can be omitted.

• Note that functions have no special visibility; to

access class variables, they need to be called with

fully qualified names (i.e., Card._values in

Card.str)

card4.py

#!/usr/bin/python

class Card:

""" A simple example class """

class variables

suits = \

["hearts", "clubs", "spades", "diamonds"]

jack = 11

queen = 12

king = 13

ace = 14

9

_values = {2: "two", 3:"three", 4:"four",\

5:"five", 6:"six", 7:"seven",\

8:"eight", 9:"nine", 10:"ten",\

11:"jack", 12:"queen", 13:"king",\

14:"ace"}

def __init__(self, suit, value):

"""the constructor method sets up

instances by initiallizing values of

instance variables"""

self.suit = suit

self.value = value

def str(self):

return Card._values[self.value] +\

" of “ + self.suit

if __name__ == "__main__":

card = Card("hearts", Card.ace)

print card.str()

10

Exceptions

• Exceptions are objects.

• Exceptions are raised using the raise

keyword.

• Exceptions can be caught using the try: ...

except ... syntax.

card5.py

#!/usr/bin/python

class InvalidSuitException:

pass

class InvalidValueException:

pass

class Card:

""" A simple example class"""

class variables

jack = 11

queen = 12

king = 13

ace = 14

11

_suits = ["hearts", "clubs", "spades",\

"diamonds"]

_values = {2:"two", 3:"three", 4:"four",

5:"five", 6:"six", 7:"seven",

8:"eight", 9:"nine", 10:"ten",

11:"jack", 12:"queen", 13:"king",

14:"ace"}

def __init__(self, suit, value):

"""The constructor method sets up

instances by initializing values of

instance variable """

if not suit in Card._suits:

raise InvalidSuitException

self.suit = suit

if not value in Card._values:

raise InvalidValueException

self.value = value

def str(self):

return Card._values[self.value]

+ " of " + self.suit

if __name__ == "__main__":

try:

card = Card("hearts", Card.ace)

except InvalidValueException:

print "Bad value"

except InvalidSuitException:

print "Bad suit"

print card.str()

12

Inheritance

• Unlike Java, Python understands multiple

inheritance.

– By using multiple inheritance, objects can

acquire properties of other classes without

having to worry.

• An example in which multiple inheritance

can be useful is when making a GUI.

– A RectangularButton can inherit from

Rectangle and Button.

card6.py

class ClassA:

"""the first class """

def hello(self):

return "Hello"

class ClassB:

"""The second class"""

def world(self):

return "World"

class ClassC(ClassA, ClassB):

"""The composite classr"""

def helloWorld(self):

return self.hello() + " " +

self.world()

13

if __name__ == "__main__":

c = ClassC()

print c.hello()

print c.world()

print c.helloWorld()

Abstract methods

• Python does not support abstract functions,

because it does not need it.

• The recommended way in Python is by

raising an exception in the superclass that

does not implement it.

14

card7.py

class Animal:

def __init__(self, name):

self.name = name

def talk(self):

raise

NotImplementedError("Subclass must implement

method")

class Cat(Animal):

def talk(self):

return "Meow!"

class Dog(Animal):

def talk(self):

return "Woof!"

if __name__ == "__main__":

for animal in [Cat("Socks"),\

Dog("Growler")]:

print animal.name + ": "

+ animal.talk()

15

Polymorphism

• Python does not support polymorphism

within a class.

– In other words, if the same function is defined

more than once in a class, subsequent

definitions hide the first one.

Polymorphism

• There are two good reasons for

polymorphism within a namespace:

1. To define a method with default parameter

values

2. To allow a method to operate on different data

types.

• Both reasons do not apply in Python.

• Parameters support default values and data

types are dynamically bound to variables.

16

card8.py

SIEGFRIE@panther:~/python$ cat card8.py

def method(a = 10, b = 20, c = 30):

return a, b, c

print method()

print method(1)

print method(1, 2)

print method(1, 2, 3)

SIEGFRIE@panther:~/python$ python card8.py

(10, 20, 30)

(1, 20, 30)

(1, 2, 30)

(1, 2, 3)

SIEGFRIE@panther:~/python$

Name mangling

• To avoid name clashes in subclasses,

Python supports name mangling.

• All names (functions and variables) that

begin with a double underscore (__) are

implicitly translated to the form

_classname__name.

• In some case, name mangling is used to

simulate private names.

17

card9.py

SIEGFRIE@panther:~/python$ cat card9.py

class ClassA:

def myfunc(self):

return "myfunc A"

def __myfunc(self):

return "__myfunc A"

class ClassB(ClassA):

def myfunc(self):

return "myfunc B"

def __myfunc(self):

return "__myfunc B"

if __name__ == "__main__":

b = ClassB()

print b.myfunc() # myfunc in ClassA is

inaccessible

print b._ClassA__myfunc()

print b._ClassB__myfunc()

SIEGFRIE@panther:~/python$ p

myfunc B

__myfunc A

__myfunc B

SIEGFRIE@panther:~/python$

