CSC 271 - Software I: Utilities
and Internals

Lecture #11 — Objects and Classes in
Python

Recap

Python is a general purpose interpreted language
using indentation as block delineation.

Variables are implicitly defined, dynamically
typed and data types are dynamically bound to
variables.

The language is case sensitive.

Atomic data types include integer, floating point
number, Boolean and string.

Composite data types include list, set and
dictionary.

Classes and Objects

* We know from our classes in object-
oriented programming that an object is a
tangible instance of a class.

* Objects encapsulate data with operations.

» Data is represented by attributes and
operations are implemented as methods.

Classes and Objects

* In pure OO languages, classes can specialize super
classes (or, alternatively phrases, super classes
generalize sub classes).

* For example:

— It 1s fair to say that all squares are rectangles,
and that tall rectangles are shapes.

— Rectangle is a generalization of square and
shape is a generalization of rectangle.

— Circle 1s also sub-class of shape, but along a
different path.

Classes

* Although it is completely possible to ignore it,
Python is a true object-oriented language.

* By convention, classes are named with an initial
uppercase letter.

» Methods are functions and always take a reference
to self as their first parameter. self is assigned a
value when the class is instantiated.

* In this example, the Card class contains two
methods (funcl and func2).

Card.py

#!/usr/bin/python

class Card:
""" A simple example class """
def funcl (self):

mwmwn Function 1 mwmwn

def func2(self):

mwmwn Function 2 mwmwn

if name == "__main_ ":
card = Card()

Constructors

 [f a class contains instance variables, they
are defined and initialized within the
constructor.

* The constructor method 1s called __init
and, in addition to self, may contain
additional parameters.

card.py
#!/usr/bin/python

class Card:
""" A simple example class """
def _ init_ (self, suit, wvalue):

""" the constructor method sets
up instances by

initializing initial vale to
instance variables."""
self.suit = suit

self.value = value

if name == "_ _main_":
card = Card("hearts", 2)

Class Variables

e (Class variables are variables that are shared
by all instances of the class.

— Other languages refer to them as static
variables.

e All variables defined in a class, but outside
a function, are class variables.

card2.py

#!/usr/bin/python

class Card:
""" A simple example class """

Class variables
suits = ["hearts", "clubs", "spades",\
"diamonds"]

jack = 11
queen = 12
king =13

ace = 14

""" the constructor method sets up

instances by initializing initial

value to instance variables."""
self.suit = suit
self.value = value

if name == "_ _main_":
card = Card("hearts", Card.ace)

Visibility of variables

e Python does not have built-in for visibility

modifiers.

— As such, it is not possible to define a variable as

private.

* However, by convention, all names that
start with single underscore (_) should be

considered private.

» This applies to functions, as well as
variables.

card3.py
! /usr/bin/python

class Card:
""" A simple example class """

Class variables
suits = ["hearts", "clubs", "spades", \
"diamonds"]

jack = 11
queen = 12
king =13
ace = 14
card3.py
_wvalues = {2: "two", 3: "three",

4: "four", 5:"five", 6: "six",
7: "seven", 8: "eight",

9: "nine", 10: "ten",

11: "jack", 12: "queen",
13:"king", 14:"ace" }

def _ init_ (self, suit, wvalue):
""" the constructor method sets
up instances by
initializing initial value to
instance variables."""
self.suit = suit
self.value = value

Functions

 There is nothing special about functions in a class.
— They behave exactly the same as other
functions.
— The only difference is that self must be defined
as the first argument to the function.
— When calling the function, it can be omitted.
* Note that functions have no special visibility; to
access class variables, they need to be called with

fully qualified names (i.e., Card._values in
Card.str)

card4.py
#!/usr/bin/python

class Card:
""" A simple example class """

class variables

suits = \

["hearts", "clubs", "spades", "diamonds"]
jack = 11

queen = 12

king = 13

ace = 14

_values = {2: "two", 3:"three", 4:"four",\
5:"five", 6:"six", 7:"seven",\
8:"eight", 9:"nine", 10:"ten",\

11:"jack", 12:"queen", 13:"king",\

14:"ace"}

def _ init_ (self, suit, value):
"""the constructor method sets up
instances by initiallizing values of
instance variables"""
self.suit = suit

self.value = value

def str(self):
return Card._values[self.value] +\
" of “ + self.suit

if name == "_ _main_":
card = Card("hearts", Card.ace)
print card.str()

Exceptions

* Exceptions are objects.

* Exceptions are raised using the raise
keyword.

* Exceptions can be caught using the try: ...
except ... syntax.

card5.py

#!/usr/bin/python

class InvalidSuitException:
pass

class InvalidValueException:
pass

class Card:
""" A simple example class"""

class variables

jack = 11
queen = 12
king = 13
ace = 14

10

_suits = ["hearts", "clubs", "spades",\
"diamonds"]

_values = {2:"two", 3:"three", 4:"four",

5:"five", 6:"six", 7:"seven",
8:"eight", 9:"nine", 10:"ten",
11:"jack", 12:"queen", 13:"king",
14:"ace"}

def _ init_ (self, suit, wvalue):
"""The constructor method sets up
instances by initializing values of
instance variable """
if not suit in Card._suits:
raise InvalidSuitException
self.suit = suit

if not value in Card._values:
raise InvalidValueException
self.value = value

def str(self):
return Card._values[self.value]
+ " of " + self.suit

if name == "__main ":

try:
card = Card("hearts", Card.ace)
except InvalidValueException:
print "Bad value"
except InvalidSuitException:
print "Bad suit"
print card.str()

11

Inheritance

» Unlike Java, Python understands multiple
inheritance.

— By using multiple inheritance, objects can
acquire properties of other classes without
having to worry.

* An example in which multiple inheritance
can be useful is when making a GUI.

— A RectangularButton can inherit from
Rectangle and Button.

cardé6.py

class ClassA:
"""the first class """

def hello(self):
return "Hello"

class ClassB:
"""The second class"""
def world(self):
return "World"

class ClassC(ClassA, ClassB):
"""The composite classr"""
def helloWorld (self):
return self.hello() + " " +
self.world()

12

if name == "__main_":
c = ClassC()
print c.hello()
print c.world()
print c.helloWorld()

Abstract methods

* Python does not support abstract functions,
because it does not need it.

e The recommended way in Python is by
raising an exception in the superclass that
does not implement it.

13

card’.py

class Animal:
def _ init__ (self, name):
self.name = name
def talk(self):
raise
NotImplementedError ("Subclass must implement
method")

class Cat (Animal) :
def talk(self):
return "Meow!"

class Dog(Animal) :
def talk(self):
return "Woof!"

if name == "_ _main_":
for animal in [Cat ("Socks"),\
Dog ("Growler")]:
print animal.name + ": "
+ animal.talk ()

14

Polymorphism

e Python does not support polymorphism
within a class.

— In other words, if the same function 1s defined
more than once in a class, subsequent
definitions hide the first one.

Polymorphism

* There are two good reasons for
polymorphism within a namespace:

1. To define a method with default parameter
values

2. To allow a method to operate on different data
types.
» Both reasons do not apply in Python.

» Parameters support default values and data
types are dynamically bound to variables.

15

card8.py

SIEGFRIE@panther:~/python$ cat card8.py
def method(a = 10, b = 20, ¢ = 30):
return a, b, c

print method()

print method (1)

print method(1l, 2)

print method(1l, 2, 3)
SIEGFRIE@panther:~/python$ python card8.py
(10, 20, 30)

(1, 20, 30)

(1, 2, 30)

(1, 2, 3)

SIEGFRIE@panther:~/python$

Name mangling

* To avoid name clashes in subclasses,
Python supports name mangling.

* All names (functions and variables) that
begin with a double underscore (__) are

implicitly translated to the form
__classname___name.

* In some case, name mangling is used to
simulate private names.

16

card9.py

SIEGFRIE@panther:~/python$ cat card9.py
class ClassA:
def myfunc(self):
return "myfunc A"

def _ myfunc(self):
return "__ _myfunc A"

class ClassB(ClassA) :
def myfunc (self):
return "myfunc B"

def _ myfunc(self):
return "__ _myfunc B"

if name == "_ _main_":

b = ClassB()

print b.myfunc() # myfunc in ClassA is
inaccessible

print b._ClassA__ myfunc()

print b._ClassB__ _myfunc()
SIEGFRIE@panther:~/python$ p
myfunc B
_ _myfunc A
_ _myfunc B
SIEGFRIE@panther:~/python$

17

