
1

CSC 270 – Survey of

Programming Languages

C++ Lecture 1 : C++ As A Better C

A First Program

#include <iostream>

using namespace std;

int main(void)

{

cout << "This is my first C++ program.“

<< endl;

return(0);

}

statements

header

open and close braces mark

the beginning and end

makes input

and output available

to us

2

Average3.cpp

#include <iostream>

using namespace std;

int main(void)

{

int value1, value2, value3;

float sum, average;

cout << "What is the first value? ";

cin >> value1; // for comments

cout << "What is the second value? ";

cin >> value2;

cout << "What is the third value? ";

cin >> value3;

sum = value1 + value2 + value3;

average = sum / 3;

cout << "Average = " << average << endl;

return(0);

}

3

Comments

• Our program is a bit longer than our previous
programs and if we did not know how to calculate
gross pay, we might not be able to determine this
from the program alone.

• It is helpful as programs get much longer to be
able to insert text that explains how the program
works. These are called comments. Comments
are meant for the human reader, not for the
computer.

• In C++, anything on a line after a double slash
(//) is considered a comment.

A program that uses a character variable

#include <iostream>

#include <string>

using namespace std;

// A very polite program that greets you by name

int main(void)

{

string name;

cout << "What is your name?\t";

cin >> name;

cout << "Pleased to meet you, " << name << endl;

return (0);

}

4

Formatting float output in C++

• cout and cin are examples of what are

called stream input/output.

• Stream I/O uses a set of built-in values

called format flags to determine how data is

printed. We can changes these values by

using setf(). For now, we will use it

only to reformat float values.

setf and the ios flags

• When we wish to ensure that float is printed
with a fixed decimal point and a certain
number of decimal places we place:

cout.setf(ios::showpoint);

cout.setf(ios::fixed);

cout.precision(2);

Guarantees that trailing

zeros appear
Gives us two

decimal places

Float numbers are

always written in

regular notation

(not scientific notation)

5

the width flag

• Every time we wish a number to be printed
and to take up a fixed amount of place (not
merely what it needs), we write:

cout.width(15);

This assures that the item being printed will
occupy 15 spaces.

• Unlike the other flags changes that remain
in effect once you call them, width must be
reset each time you use it.

Changing the width

Number Formatting Print as:

182 cout.width(2) 182

182 cout.width(3) 182

182 cout.width(5) ``182

182 cout.width(7) ``182

-182 cout.width(4) -182

-182 cout.width(5) `-182

-182 cout.width(7) ```-182

6

Changing the width (continued)

Number Formatting Print as:

23 cout.width(1) 23

23 cout.width(2) 23

23 cout.width(6) ….23

23 cout.width(8) ……23

11023 cout.width(4) 11023

11023 cout.width(6) .11023

-11023 cout.width(6) -11023

-11023 cout.width(10) …..11023

Changing the precision

Number Width Precision Prints as:

2.718281818 cout.width(8) cout.precision(5); `2.71828

2.718281818 cout.width(8) cout.precision(3); ```2.718

2.718281818 cout.width(8) cout.precision(2); ````2.72

2.718281818 cout.width(8) cout.precision(0); ````````3

2.718281818 cout.width(13) cout.precision(11); 2.71828182800

2.718281818 cout.width(12) cout.precision(11); 2.71828182800

7

The revised Compound program

#include <iostream>

using namespace std;

// Calculate the interest that the Canarsie

// Indians could have accrued if they had

// deposited the $24 in an bank account at

// 5% interest.

int main(void)

{

const int present = 2000;

int year;

const float rate = 0.05;

float interest, principle;

// Set the initial principle at $24

principle = 24;

// For every year since 1625, add 5%

// interest to the principle and print

// out the principle

//There has to be two fixed places for

// the principle

cout.setf(ios::showpoint);

cout.setf(ios::fixed);

cout.precision(2);

8

for (year = 1625; year < present; year++) {

interest = rate * principle;

principle = principle + interest;

cout << "year = " << year ;

// Use 15 places for printing the principle

cout << "\tprinciple = ";

cout.width(15);

cout << principle << endl;

}

return(0);

}

exit()

• exit() allows the user to let a program

terminate if the program detects an

unrecoverable error.

• The statement

#include <cstdlib>

has to be included.

• A non-zero status value should be returned

when the program terminates abnormally.

9

What Are References

Parameters?

• Reference parameters do not copy the value

of the parameter.

• Instead, they give the function being called

a copy of the address at which the data is

stored. This way, the function works with

the original data.

• We call this passing by reference because

we are making references to the parameters.

Rewriting power

• We can make the power function tell the

main program about the change in y by

placing am ampersand (&) between the data

type and variable name:
void power (float &y, float x, int n)

{

… … …

}

10

power.cpp rewritten

#include <iostream>

using namespace std;

void power(float &y, float x, int n);

// A program to calculate 4-cubed using a

// function called power

int main(void) {

float x, y;

int n;

x = 4.0;

n = 3;

y = 1.0;

power(y, x, n);

cout << "The answer is " << y << endl;

}

// power() - Calculates y = x to the nth power

void power(float &y, float x, int n) {

y = 1.0;

while (n > 0) {

y = y * x;

n = n - 1;

}

cout << "Our result is " << y << endl;

}

11

// Find the average of three numbers using a

// function

int main(void) {

int value1, value2, value3;

float mean;

//Get the inputs

getvalue(value1);

getvalue(value2);

getvalue(value3);

// Call the function that calculates the average

// and then print it

mean = find_average(value1, value2, value3);

cout << "The average is " << mean << endl;

}

// getvalue() - Input an integer value

void getvalue(int &x) {

cout << "Enter a value ?";

cin >> x;

}

// find_average() - Find the average of three

// numbers

float find_average(int x, int y, int z) {

float sum, average;

sum = (float) (x + y + z);

average = sum / 3;

return average;

}

12

Enumeration Constants in C

• Instead of writing

#define NO 0

#define YES 1

we can write

enum boolean {NO, YES};

• The first value is defined as 0, and each subsequent value is

one greater, unless we explicitly state a value.

enum escapes {BELL = '\a', BACKSPACE = '\b',

TAB = '\t', NEWLINE = '\n', VTAB = '\v'};

enum months {JAN = 1, FEB, MAR, APR, MAY, JUN,

JUL,AUG, SEP, OCT, NOV, DEC }

/* FEB is 2, MAR is 3, etc. */

enum in C++

• In C, the keyword enum must appear before

the type when declaring variables:

enum days {sun, mon, … , fri,

sat};

enum days today;

• This is NOT necessary in C++:

days today;

13

struct in C++

• Unlike C, the keyword struct is not required

when declaring variables of a struct type:

struct myDataType {

};

myDataType myData;

#define

• In, C we have used #define to define

constants. The preprocessor replaces each

occurrence of the name with its value.

• We can also use it to define simple

functions

• #define sqr(x) ((x)*(x))

• We include parentheses to ensure its correct

translation by the preprocessor.

14

const

• The compiler sees the program after the

preprocessor is finished, so the error

messages reflect the preprocessed code, not

the original source code.

• The const statement ensures that the

compiler produces error messages that

reflect what was originally written:

• const float pi = 3.14159;

inline functions

• Functions call can take a large amount of time to

execute.

• Inline functions avoid this by inserting the code

for the function in the object code.

inline float abs(x)

{ return (x>=0)? x: -x;}

• Because an inline function's code is physically

inserted in the program each time its called, we

limit its use to small functions.

