
1

CSC 270 – Survey of

Programming Languages

C Lecture 6 – Pointers and Dynamic

Arrays

What is a Pointer?

• A pointer is the address in memory of a

variable. We call it a pointer because we

envision the address as “pointing” to where the

value is stored.

• Reference parameters make use of pointers.

• Arrays are passed by reference because the

name of an array (without an index following

it) is a pointer to where the array is stored.

2

Pointer Variables

• When we write

double x;

we are saying that there is a double-precision value

stored in memory and x is the value at that location.

• When we write

double *p

we are saying that the pointer to a double-precision

value is stored in memory and that p’s value is the

address at which the value is stored.

Declaring and Using Pointer Variables

• We can declare several pointer variables in the same

statement, even together with variable of the type to

which they point:

int v1, v2, v3, *p1, *p2, *p3;

• We can assign values to pointers using the

referencing operator (&):

p1 = &v1; /* p1 holds the address

where v1 is stored.*/

3

Using Pointers

v1 = 0;

p1 = &v1;

*p1 = 42;

printf("%d\n", v1);

printf("%d\n", *p1);

Output

42

42

Pointers and the Assignment Operation

• Writing

p2 = p1

printf("%d\n", *p2);

will also produce 42 (unless v1’s value was

changed).

4

p1 = p2

p1 8

p2 9

p1 8

p2 9

Before After

*p1 = *p2

p1 8

p2 9

p1 9

p2 9

Before After

5

alloc()

• The library function malloc() is used to allocate

memory for a data item and then to assign its address

to a pointer variable.

• The prototype for malloc() is

void* malloc (size_t size);

where size_t is an unsigned integer type

• Variables that are created using malloc() are called

dynamically allocated variables.

malloc()- An Example

p1 = (int *) malloc(sizeof(int));

scanf("%d", p1);

*p1 = *p1 + 7;

printf("%d", *p1);

6

free()

• The function free() eliminates a dynamic

variable and returns the memory that the

dynamic variable occupied to the heap. It can

be re-used.

• The prototype:

void free (void* p);

• After the free statement, p’s value is

undefined.

BasicPointer.c

// Program to demonstrate pointers and dynamic

// variables

#include <stdio.h>

int main(void)

{

int *p1, *p2;

p1 = (int*) malloc(sizeof(int));

*p1 = 42;

p2 = p1;

printf("*p1 == %d\n", *p1);

printf("*p2 == %d\n", *p2);

7

*p2 = 53;

printf("*p1 == %d\n", *p1);

printf("*p2 == %d\n", *p2);

p1 = (int*) malloc(sizeof(int));

*p1 = 88;

printf("*p1 == %d\n", *p1);

printf("*p2 == %d\n", *p2);

printf("Hope you got the point of this "

"example!\n");

free(p1);

free(p2);

return(0);

}

Output from BasicPointer.cpp

*p1 == 42

*p2 == 42

*p1 == 53

*p2 == 53

*p1 == 88

*p2 == 53

Hope you got the point of this example!

8

Explaining BasicPointer.cpp

?p1

?p2

int *p1, *p2;

p1 ?

?p2

p1 = (int*) malloc(sizeof(int));

Explaining BasicPointer.cpp

p1 42

?p2

*p1 = 42;

p1 42

p2

p2 = p1;

9

Explaining BasicPointer.cpp

p1 53

p2

p2 = p1;

p1 ?

p2 53

p1 = (int*) malloc(sizeof(int));

Explaining BasicPointer.cpp

p1 88

p2 53

*p1 = 88;

10

Basic Memory Management

• The heap is a special area of memory reserved

for dynamically allocated variables.

• Older compilers would return NULL if there

wasn’t enough memory when calling malloc.

• It could potentially cause the program to abort

execution.

Stopping Errors with malloc()

int *p;

p = (int *) malloc(sizeof(int));

if (p == NULL) {

cout << "Insufficient memory\n";

exit(1);

}

/* If malloc succeeded the program,

continues here */

11

NULL

• NULL is actually the number 0, but we prefer to

think of it as a special-purpose value..

• NULL’s definition appears in <cstdlib>, and
<stdlib.h>

• NULL is assigned to a pointer variable of any

type.

Dangling Pointers

• A dangling pointer is a pointer variable is
undefined.

• If p is a dangling pointer, then *p references
memory that has been returned to the heap and
the result is unpredictable.

• C++ has no built-in mechanism for checking
for dangling pointers.

– For this reason, it is always a good idea to set
dangling pointers to NULL.

12

Dynamic Variables

• Variables created using the malloc operator are
called dynamic variables (they are created and
destroyed while the program is running.

• Storage for local variables are allocated when the
function is called and de-allocated when the function
call is completed. They are called automatic
variables because this is all done automatically.

• Variables declared outside any function or class
definition are called external (or global) variables.
They are statically allocated because their storage is
allocated when the program is translated.

typedef

• You can define a pointer type name so that pointer

variables can be declared like other variables.

• E.g.,

typedef int * IntPtr;

IntPtr p; // equivalent to int *p;

• typedef can be used to define any kind of data

type:

typedef double Kilometers;

Kilometers distance;

13

Dynamic Arrays

• A dynamic array is an array whose size is not

specifically when you write the program.

• Example

int a[10];

typedef int *IntPtr;

IntPtr p;

…

p = a; /* p[i] refers to a[i] */

ArrayDemo.cpp

// Program to demonstrate that an array variable is

// a kind of pointer variable

#include <stdio.h>

typedef int* IntPtr;

int main(void)

{

IntPtr p;

int a[10];

int index;

for (index = 0; index < 10; index++)

a[index] = index;

14

p = a;

for (index = 0; index < 10; index++)

printf("%d ", p[index]);

printf("\n");

for (index = 0; index < 10; index++)

p[index] = p[index] + 1;

for (index = 0; index < 10; index++)

printf("%d ", a[index]);

printf("\n");

return(0);

}

Output
0 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10

Creating and Using Dynamic Arrays

• You do not always know in advance what size

an array should be. Dynamic arrays allow the

programmer to create arrays that are flexible in

size:

typedef double *DoublePtr;

DoublePtr d;

d = (double *)

malloc (10*sizeof(double));

15

DynArrayDemo.cpp

// Searches a list of numbers entered at the

// keyboard

#include <stdio.h>

#include <stdlib.h>

typedef int* IntPtr;

void fillArray(int a[], int size);

// Precondition: size is the size of the array a

// Postcondition: a[0] through a[size-1] have been

// filled with values read from the keyboard.

int search(int a[], int size, int target);

// Precondition: size is the size of the array a

// The array elements a[0] through a[size-1] have

// values.

// If target is inthe array, returns the first index

// of target

// If target is not in the array, returns -1.

int main(void)

{

int arraySize, target;

int location;

IntPtr a;

16

printf("This program searches a list of "

" numbers.\n");

printf("How many numbers will be on the "

"list\t?");

scanf("%d", &arraySize);

a = (int *) malloc(arraySize*sizeof(int));

fillArray(a, arraySize);

printf("Enter a value to search for:\t?");

scanf("%d", &target);

location = search(a, arraySize, target);

if (location == -1)

printf("%d is not in the array.\n",

target);

else

printf("%d is element %d in the array.\n"

<< target, location);

free(a);

return(0);

}

17

// Uses the library <stdio.h>:

void fillArray(int a[], int size)

{

printf("Enter %d integers.", size);

for (int index = 0; index < size; index++)

scanf("%d", &a[index]);

}

int search(int a[], int size, int target)

{

int index = 0;

while ((a[index] != target) && (index < size))

index++;

if (index == size) /* If target is not in a */

index = -1;

return index;

}

18

Why use free(a);?

• The free(a) function call is necessary if the

program will do other things after finishing its

use of a dynamic array, so the memory can be

reused for other purposes.

PtrDemo.cpp

#include <stdio.h>

int* doubler (int a[], int size);

/*

* Precondition: size is the size of the array a

* A indexed variables of a have values.

* Returns: a pointer to an array of the same size

* as a in which each index variable is

* double the corresponding element in a.

*/

19

int main(void)

{

int a[] = {1, 2, 3, 4, 5};

int *b;

b = doubler(a, 5);

int i;

printf("array a:\n");

for (i = 0; i < 5; i++)

printf("%d ", a[i]);

printf("\n");

printf("Array b:\n");

for (i = 0; i < 5; i++)

printf("%d ", b[i]);

printf("\n");

free(b);

return(0);

}

int *doubler(int a[], int size)

{

int *temp;

temp = (int *) malloc(size*sizeof(int));

for (int i = 0; i < size; i++)

temp[i] = 2*a[i];

return temp;

}

20

Output from PtrDemo.cpp

array a:

1 2 3 4 5

Array b:

2 4 6 8 10

Pointer Arithmetic

• If p is a pointer, p++ increment p to point to the next
element and p += i; has p point i elements beyond
where it currently points.

• Example
typedef double* DoublePtr;

DoublePtr d;

d = (double *) malloc(10*sizeof(double);

• d +1 points to d[1], d+2 points to d[2].

• If d = 2000, d+1 = 2004 (double use 4 bytes of
memory).

21

Pointer Arithmetic – An Example

for (i = 0; i < arraySize; i++)

printf("%d ", *(d+i));

is equivalent to

for (i = 0; i < arraySize; i++)

printf("%d ", d[i]);

Pointers and ++ and --

• You can also use the increment and decrement

operators, ++ and – to perform pointer

arithmetic.

• Example

• d++ advances the pointer to the address of the

next element in the array and d–- will set the

pointer to the address of the previous element

in the array.

22

Multidimensional Dynamic Arrays

• Multidimensional dynamic arrays are really

arrays of arrays or arrays of arrays of arrays,

etc.

• To create a 2-dimensional array of integers,

you first create an array of pointers to integers

and create an array of integers for each

element in the array.

Creating Multidimensional Arrays

// Create a data type for to integers

typedef int * IntArrayPtr;

// Allocate an array of 3 integer pointers

IntArrayPtr *m = new IntArrayPtr[3];

// Allocate for 3 arrays of 4 integers each.

for (int i = 0; i < 3; i++)

m[i] = new int[4];

// Initialize them all to 0

for (int i = 0; I < n; i++)

for (int j = 0; j < n; j++)

m[i][j] = 0;

23

delete []

• Since m is an array of array, each of the arrays

created with new in the for loop must be

returned to the heap using a call to delete[]

and then afterward, m itself must be returned

using delete[].

MultArrayDemo.cpp

#include <iostream>

using namespace std;

typedef int *IntArrayPtr;

int main(void)

{

int d1, d2;

cout << "Enter the row and column dimensions"

<< " of the array:\t";

cin >> d1 >> d2;

IntArrayPtr *m = new IntArrayPtr[d1];

int i, j;

24

for (i = 0; i < d1; i++)

m[i] = new int[d2];

// m is now a d1-by-d2 array.

cout << "Enter " << d1 << " rows of "

<< d2 << " integers each:\n";

for (i = 0; i < d1; i++)

for (j = 0; j < d2; j++)

cin >> m[i][j];

cout << "Echoing the two-dimensional"

<< " array:\n";

for (i = 0; i < d1; i++) {

for (j = 0; j < d2; j++)

cout << m[i][j] << " ";

cout << endl;

}

for (i = 0; i < d1; i++)

delete [] m[i];

delete [] m;

return(0);

}

25

Output

Enter the row and column dimensions of the array:

3 4

Enter 3 rows of 4 integers each:

1 2 3 4

5 6 7 8

9 0 1 2

Echoing the two-dimensional array:

1 2 3 4

5 6 7 8

9 0 1 2

