
1

CSC 270 – Survey of

Programming Languages

C Lecture 1 : Getting Started: in C

A First Program

#include <stdio.h>

int main(void)

{

printf("This is my first C program.\n");

return(0);

}

statements

header

open and close braces mark

the beginning and end

makes input

and output available

to us

2

A First Program – What Does It Do?

printf("This is my first C program.\n");

return(0);

Prints the message
This is my first C++ program.

Ends the program Ends the line

Identifier Rules

• An identifier must begin with a letter or an
underscore _

• C is case sensitive upper case (capital) or lower
case letters are considered different characters.
Average, average and AVERAGE are three
different identifiers.

• Numbers can also appear after the first character.

3

Identifier Rules (continued)

• Identifiers can be as long as you want but names
that are too long usually are too cumbersome.

• However, C only considers the first 6 (external
identifiers) or first 31 (internal identifiers)
significant.

• Identifiers cannot be reserved words (special
words like int, main, etc.)

Average3.cpp

#include <stdio.h>

int main(void)

{

int value1, value2, value3;

float sum, average;

printf("What is the first value? ");

scanf("%d", &value1);

printf("What is the second value? ");

scanf("%d", &value2);

Indicates that we are

reading an integer

Read

4

printf("What is the third value? ");

scanf("%d", &value3);

sum = value1 + value2 + value3;

average = sum / 3;

printf("Average = %f\n", average);

return(0);

}

scanf needs the &

before the identifier

payroll.c

#include <stdio.h>

int main(void)

{

float rate, hours, gross;

printf("What is your hourly pay rate ? ");

scanf("%f",&rate);

printf("How many hours did you work ? ");

scanf("%f", &hours);

5

gross = rate * hours;

printf("Your gross pay is $%f\n", gross);

return(0);

} Print a float value

Comments

• In C, anything beginning with /* and ending with
*/ is considered a comment.

6

payroll.c
#include <stdio.h>

/*

* This program calculates the gross pay for an

* hourly worker.

* Inputs - hourly pay rate and number of hours

* worked

* Output - Gross pay

*/

int main(void)

{

float rate, hours, gross;

/* Get the hourly rate */

printf("What is your hourly pay rate ? ");

scanf("%f",&rate);

/* Get the number of hours worked */

printf("How many hours did you work ? ");

scanf("%f", &hours);

/* Calculate and display the gross pay */

gross = rate * hours;

printf("Your gross pay is $%f\n", gross);

return(0);

}

7

Character Data

• All of our programs so far have used
variables to store numbers, not words.

• We can store one or more characters by
writing:

char x, s[10];

– x can hold one and only one character

– s can up to nine characters.

• For now, we use character data for input
and output only.

A program that uses a character variable

#include <stdio.h>

/* A very polite program that greets you by name */

int main(void)

{

char name[25];

/* Ask the user his/her name */

printf("What is your name ? ");

scanf("%s", &name);

/* Greet the user */

printf("Glad to meet you, %s\n.", name);

return(0);

}

8

if and if-else (continued)

• The general form is:

if (expression)

statement;

or

if (expression)

statement;

else

statement;

IsItNeg.c

#include <stdio.h>

/*

* Tell a user if a number is negative

* or non-negative

*/

int main(void)

{

float number;

/* Ask the user for a number */

printf("Please enter a number ? ");

scanf("%f", &number);

9

// Print whether the number is negative or not

if (number < 0)

printf("%f is a negative number\n",

number);

else

printf("%f is NOT a negative number\n",

number);

return(0);

}

// Print the warning if appropriate

if (speed > 55) {

printf("**BE CAREFUL!**");

printf("You are driving too fast!\n");

}

return(0);

}

10

Declaring Constants

•There are two ways of defining constants in C: using

#define and const.

•#define is a compiler preprocessor which replaces each

occurrence of the constant's name with its value:

•The general form of the constant declaration is:
#define ConstantName ConstantValue

•Let's take a look at a few examples:
#define withholding_rate 0.8

#define prompt 'y'

#define answer "yes"

#define maxpeople 15

#define inchperft 12

#define speed_limit 55

Declaring Constants

•The general form of the constant declaration is:
const datatype ConstantName =

ConstantValue,

AnotherConstantName =

AnotherConstantValue;

•Let's take a look at a few examples of constants:
const float withholding_rate = 0.8;

const char prompt = 'y',

answer = "yes";

const int maxpeople = 15,

inchperft = 12;

speed_limit = 55;

11

Counting Loops

• We use a for loop to write counting loops

• In C, it looks like this:
for (count = start; count <= finish; count++)

statement

• or
for (count = start; count <= finish; count++) {

statements

}

Counting Loops (continued)

for (count = start; count <= finish; count++)

statement

variable used to count

times through the loop

initial value

of the counter

final value of

the counter

12

HelloAgain.cpp

#include <stdio.h>

/*

* Hello again - this is a better way to write

* "Hello, again" five times

*/

int main(void)

{ int i;

for (i = 1; i <= 5; i++)

printf("Hello, again\n");

return(0);

}

The Interest Program

#include <stdio.h>

/*

* Calculate the interest that the Canarsie

* Indians could have accrued if they had

* deposited the $24 in an bank account at

* 5% interest.

*/

int main(void)

{

const int present = 2016;

int year;

const float rate = 0.05;

float interest, principle;

/* Set the initial principle at $24 */

principle = 24;

13

/*

* For every year since 1625, add 5% interest

* to the principle and print out

* the principle

*/

for (year = 1625; year < present; year++) {

interest = rate * principle;

principle = principle + interest;

printf("year = %d\tprinciple = %f\n",

year, principle);

}

return(0);

}

Output from the Compound Interest Program

•What will our output look like?

year = 1625 principle = 25.200001

year = 1626 principle = 26.460001

year = 1627 principle = 27.783001

year = 1628 principle = 29.172152

… … … … …

year = 2011 principle = 3806008832.000000

year = 2012 principle = 3996309248.000000

year = 2013 principle = 4196124672.000000

year = 2014 principle = 4405931008.000000

year = 2015 principle = 4626227712.000000

•This does not look the way we expect monetary amounts

to be written!

14

%d and %f

• The specifiers %d and %f allow a programmer to

specify how many spaces a number will occupy

and (in the case of float values) how many

decimal places will be used.

• %nd will use at least n spaces to display the

integer value in decimal (base 10) format.

• %w.df will use at least w spaces to display the

value and will have exactly d decimal places.

Changing the width

```-182%7d-182

`-182%5d-182

-182%4d-182

````182%7d182

``182%5d182

182%3d182

182%2d182

Print as:FormattingNumber

15

Changing the width (continued)

…..-11023%10d-11023

-11023%6d-11023

.11023%6d11023

11023%4d11023

……23%8d23

….23%6d23

23%2d23

23%1d23

Print as:FormattingNumber

Changing The Precision

Number Formatting Prints as:

2.718281828 %8.5f `2.71828

2.718281828 %8.3f ```2.718

2.718281828 %8.2f ````2.72

2.718281828 %8.0f ````````3

2.718281828 %13.11f 2.71828182800

2.718281828 %13.12f 2.718281828000

16

The revised Compound program

#include <stdio.h>

/*

* Calculate the interest that the Canarsie

* Indians could have accrued if they had

* deposited the $24 in an bank account at

* 5% interest.

*/

int main(void)

{

const int present = 2000;

int year;

const float rate = 0.05;

float interest, principle;

/* Set the initial principle at $24 */

principle = 24;

/*

* For every year since 1625, add 5%

* interest to the principle and print out

* the principle

*/

for (year = 1625; year < present; year++)

{

interest = rate * principle;

principle = principle + interest;

printf("year = %d\tprinciple = %15.2f\n",

year, principle);

}

return(0);

}

17

for (year = 1625; year < present; year++) {

interest = rate * principle;

principle = principle + interest;

printf("year = %d\tprinciple = %15.2f\n",

year, principle);

}

return(0);

}

The output from the Revised Compound

Program

Our output now looks like this:
year = 1625 principle = 25.20

year = 1626 principle = 26.46

year = 1627 principle = 37.78

year = 1628 principle = 29.17

… … … … … … … … … … … … … … …

year = 1996 principle = 1830755328.00

year = 1997 principle = 1922293120.00

year = 1998 principle = 2018407808.00

year = 1999 principle = 2119328256.00

18

While Loops

• The most common form of conditional

loops are while loops.

• In C, they have the form:
while (condition)

statement;

or

while(condition) {

statements

}

keepasking.c

#include <stdio.h>

/* A simple example of how while works */

int main(void)

{

int number;

/* Get your first number */

printf("Hi there. Pick a positive"

" integer >>");

scanf("%d", &number);

19

/* Keep reading number as long as

they are positive */

while (number > 0) {

printf("Pick another positive"

" integer>>");

scanf("%d", &number);

}

printf("%d is not a positive integer\n",

number);

return(0);

}

Magic Number Problem

• The magic number game involves guessing
a number and with each wrong guess, the
player is told “too high” or “ too low”. The
goal is to guess the number in the smallest
number of tries.

• We need a method for having the computer
pick a number at random for the player to
guess.

• We will need to learn about how to use
“library functions” to provide us with the
magic number.

20

do.. while loops

• You may have noticed that we asked the user

twice for same information - the number (s)he is

guessing.

• Some loops really require that the condition be at

the end - not at the beginning.

• In Java, we have the do.. while loop, whose syntax

is:

do {

statement(s)

} (condition)

The Magic Number Program

• The main loop in the magic number program is:

do{

/* Let the user make a guess */

printf("Guess: ");

scanf("%d", &guess);

/* Let the user make another guess */

if (guess > magic)

printf(".. Wrong .. Too high\n\n");

else if (guess < magic

printf(".. Wrong .. Too low\N\n");

tries++;

} while (guess != magic);

21

exit()

• exit() allows the user to let a program

terminate if the program detects an

unrecoverable error.

• The statement

#include <stdlib.h>

has to be included.

• A non-zero status value should be returned

when the program terminates abnormally.

