
1

Intermediate Programming

Lecture #9 – Exception Handling

Runtime Errors

• Sometimes programs are stopped because their

errors are so severe that they cannot recover

from them. These are called fatal errors (or

unrecoverable errors). They are also called

exceptions, and some require the attention of

the operating system or the programmer.

• They are also called runtime errors because

they occur when the program is running.

2

Anticipating Runtime Errors

• It is almost always in the programmer’s best

interest to catch these errors himself (or

herself) because the programmer can usually

handle it more gracefully than the operating

system can.

• Java provides a mechanism for handling both

standard exceptions (errors anticipated by the

Java compiler) and non-standard exceptions.

BadDivision.java

// A sample of some bad programming

public class BadDivision {

public static void main(String[] args) {

int x, y, z;

x = 5;

y = 0;

z = x / y;

System.out.println("The answer is " + z);

}

}

3

Output for BadDivision.java

ArithmeticException: / by zero

at BadDivision.main(BadDivision.java:8)

at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)

at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)

at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)

at java.lang.reflect.Method.invoke(Unknown Source)

What is an exception?

• To Java, an exception is an object that has a

base class called Exception. It is possible to

create ones own classes of exceptions and use

them to handle errors in a graceful, proper

fashion.

4

try and catch

• It is problematic to have the operating system

try to deal with exceptions, especially the ones

that we should be able to anticipate.

• We can have the methods deal with their own

problems by using try and catch.

• The exception that occurs in a try block is

handled by the appropriate catch block.

Syntax for try and catch

try {

Some statements where an exception may

occur

} catch (AnExceptionType exception) {

Some statement to handle the exception

}

5

BadDivision.java

Rewritten to Handle the Exception
// A sample of some bad programming

public class BadDivision {

public static void main(String[] args) {

int x, y, z;

x = 5;

y = 0;

try {

z = x / y;

}

catch (ArithmeticException e) {

System.out.println("Oops! " + e.getMessage());

z = 0; // Necessary so that we can print z

}

System.out.println("The answer is " + z);

}

}

Can We Design Our Own Exceptions?

• Yes. We can do this using instances of the

base class Exception.

• We can create derived classes of the base class

exceptions.

• We can use one or more of the library

exception classes that are part of Java.

6

Example: BadIO.java

import java.util.*;

// An illustration of another type of exception

public class BadIO {

public static void main(String[] args) {

int x, y, z;

x = readInput();

System.out.println("The input is " + x);

}

// readInput() – Reads an integer input

public static int readInput() {

Scanner keyb = new Scanner(System.in);

try {

// Get the input (which should be an integer)

System.out.println("Enter an integer\t?");

return (keyb.nextInt());

}

catch (InputMismatchException e) {

// Maybe the input isn't an integer

System.out.println(e.getMessage());

System.out.println("Oops!");

return 4;

}

}

}

7

Another Example: DanceLesson.java

import java.util.Scanner;

public class DanceLesson {

public static void main(String[] args) {

Scanner keyb = new Scanner(System.in);

System.out.println

("How many male dancers are there?");

int men = keyb.nextInt();

System.out.println

("How many female dancers are there?");

int women = keyb.nextInt();

if (men == 0 && women == 0) {

System.out.println

("Lesson is canceled. No students.");

System.exit(0);

}

else if (men == 0) {

System.out.println

("Lesson is canceled. No men.");

System.exit(0);

}

else if (women == 0) {

System.out.println

("Lesson is canceled. No women.");

System.exit(0);

}

8

// women >= 0 && men >= 0

if (women >= men)

System.out.println

("Each man must dance with “

+ women/(double)men + " women");

else

System.out.println

("Each woman must dance with "

+ men/(double)women + " men");

System.out.println("Begin the lesson.");

}

}

DanceLesson2.java with try and catch

import java.util.Scanner;

public class DanceLesson2 {

public static void main(String[] args) {

Scanner keyb = new Scanner(System.in);

System.out.println

("How many male dancers are there?");

int men = keyb.nextInt();

System.out.println

("How many female dancers are there?");

int women = keyb.nextInt();

9

// This may illustrate the syntax but it isn't a

// good use of exception handling

// Here in the try block, we place the code that

// is likely to cause the exception

try {

if (men == 0 && women == 0)

throw new Exception

("Lesson is canceled. No students.");

else if (men == 0)

throw new Exception

("Lesson is canceled. No men.");

else if (women == 0)

throw new Exception

("Lesson is canceled. No women.");

// women >= 0 && men >= 0

if (women >= men)

System.out.println

("Each man must dance with "

+ women/(double)men + " women");

else

System.out.println

("Each woman must dance with "

+ men/(double)women + " men");

}

10

// Here in the catch block, we place the code

// that we will execute if there is an exception

// found.

// If we don't find an exception we skip down

// the next block of code.

catch (Exception e) {

String message = e.getMessage();

System.out.println(message);

System.exit(0);

}

System.out.println("Begin the lesson.");

}

}

throw Statement

• The syntax for a throw statement is:

throw new ExceptionClassName

(MaybeSomeArguments) ;

• When the throw statement is executed, the execution

of the surrounding try block is stopped and

(normally) control is transferred to a catch block.

The code in the catch block is executed next.

• Example

throw new Exception("Division By Zero");

11

catch Block Syntax

• The syntax for a catch block is:

catch (ExceptionClass CatchBlockParam) {

Code to be performed if an exception with this name is thrown in the try
block.

}

• The catch block parameter is an identifier in the heading of a
catch block that serves as a placeholder for an exception that
might be thrown. When a suitable exception is thrown in the
preceding try block, that exception is plugged in the for the
catch block parameter. While e is typically used, it can be any
identifier.

• Example
catch (Exception e) {

System.out.println(e.getMessage());

System.exit(0);

}

getMessage()

• Every exception has a String instance variable that contains

some message, which typically identifies the reason for the

exception.

• e.getMessage() returns the message contained within the

exception object e.

• Example

throw new Exception(“Input must be positive.”);

is caught by

Catch (Exception e) {

System.out.println(e.getMessage());

System.exit(0);

}

12

DivisionByZeroException.java

// A derived class of exceptions

public class DivisionByZeroException

extends Exception {

// While a constructor could have more,

// this is a common form.

public DivisionByZeroException() {

super("Division by zero!!");

}

// We're invoking the base class's constructor

public DivisionByZeroException(String message) {

super(message);

}

}

DivisionDemo.java

import java.util.Scanner;

public class DivisionDemo {

public static void main(String[] args) {

try {

Scanner keyb = new Scanner(System.in);

System.out.println("Enter numerator:");

int numerator = keyb.nextInt();

System.out.println("Enter denominator:");

int denominator = keyb.nextInt();

if (denominator == 0)

throw new DivisionByZeroException();

13

double quotient

= numerator/(double) denominator;

System.out.println(numerator + "/"

+ denominator + "=" + quotient);

}

catch(DivisionByZeroException e) {

System.out.println(e.getMessage());

secondChance();

}

System.out.println("End of program.");

}

public static void secondChance() {

Scanner keyb = new Scanner(System.in);

System.out.println("Try again:");

System.out.println("Enter numerator:");

int numerator = keyb.nextInt();

System.out.println("Enter denominator:");

int denominator = keyb.nextInt();

if (denominator == 0) {

System.out.println("I cannot divide by 0");

System.out.println("Aborting program.");

System.exit(0);

}

14

double quotient

= ((double) numerator)/denominator;

System.out.println(numerator + "/" + denominator

+ "=" + quotient);

}

}

Exception Object Characteristics

• The two most important things about an

exception object are its type (the exception

class or a subclass) and a message that it

carries in an instance variable (that is usually a

String).

15

Defining an Exception Subclass

• If you have no compelling reason to use any other
class as the base class, use Exception as a base

class.

• You should define two (or more) constructors (more

on this below).

• Your exception class inherits the method

getMessage(). Normally you do not need to add

any other method, but it’s legal to do so.

Defining an Exception Subclass

(continued)

• You should start each constructor definition with a call to the

constructor of the base class, such as the following:

super("Sample Exception thrown.");

• You should include a nor-argument constructor, in which case,

the call to super should have a string argument that indicates

what kind of exception it is. This string can then be recovered

by using the getMessage() method.

• You should also include a constructor that takes a single string

argument. In this case, the string should be an argument in a

call to super. That way, the string can be recovered with a

call to getMessage().

16

SampleException.java

public class SampleException extends Exception {

public SampleException() {

super("Sample exception thrown!");

}

public SampleException(String message) {

super(message);

}

}

Exception’s Message and Type

• The data type of the message being passed by

the Exception does not have to be a String.

• Under some circumstances, there may be very

good reason to let it be a string.

17

BadNumberException.java

public class BadNumberException extends Exception {

private int badNumber;

// BadNumberException() - This constructor sets

// the number

public BadNumberException(int number) {

super("BadNumberException");

badNumber = number;

}

// BadNumberException() - A default constructor

public BadNumberException() {

super("BadNumberException");

}

// BadNumberException() - This constructor sets

// the message

public BadNumberException(String message) {

super(message);

}

// getBadNumber() - An accessor for the bad number

public int getBadNumber() {

return badNumber;

}

}

18

BadNumberExceptionDemo.java

import java.util.Scanner;

public class BadNumberExceptionDemo {

public static void main(String[] args) {

try {

Scanner keyb = new Scanner(System.in);

System.out.println

("Enter one of the number 42 and 24:");

int inputNumber = keyb.nextInt();

if ((inputNumber != 42)

&& (inputNumber != 24))

throw new BadNumberException(inputNumber);

System.out.println

("Thank you for entering " + inputNumber);

}

catch (BadNumberException e) {

System.out.println(e.getBadNumber()

+ " is not what I asked for.");

}

System.out.println("End of program.");

}

}

19

Working With Multiple Exceptions

• It is possible to handle the possibilities of more

than one exception.

• The try block throws the exceptions that it

needs to throw.

• Then it is a matter of having multiple catch

blocks, one per exception type.

MoreCatchBlocksDemo.java

import java.util.Scanner;

public class MoreCatchBlocksDemo {

public static void main(String[] args) {

Scanner keyb = new Scanner(System.in);

try {

System.out.println

("How many pencils do you have?");

int pencils = keyb.nextInt();

if (pencils < 0)

throw new

NegativeNumberException("pencils");

System.out.println

("How many eraser do you have");

int erasers = keyb.nextInt();

20

double pencilsPerEraser;

if (erasers < 0)

throw new

NegativeNumberException("erasers");

else if (erasers != 0)

pencilsPerEraser = pencils/(double) erasers;

else

throw new DivisionByZeroException();

System.out.println

("Each erase must last through "

+ pencilsPerEraser + " pencils.");

}

catch (NegativeNumberException e) {

System.out.println

("Cannot have a negative number of “

+ e.getMessage());

}

catch (DivisionByZeroException e) {

System.out.println("Do not make any
mistakes.");

}

System.out.println("End of program.");

}

}

21

NegativeNumberException.java

public class NegativeNumberException

extends Exception {

// BadNumberException() - A default constructor

public NegativeNumberException() {

super("NegativeNumberException");

}

// NegativeNumberException() - This constructor

// sets the message

public NegativeNumberException(String message) {

super(message);

}

}

Throwing Exceptions in a Method

• Sometimes it may make sense to throw an exception

in a method, even though you have no desire to catch

it.

• In cases, like these, you can declare the exception in

the method header:
public void sampleMethod() throws SampleException {

• If there is more than one exception to be thrown, they

are listed in the header, separated by commas:
public void sampleMethod()

throws SampleException, OtherSampleException {

22

DivisionDemo2.java

import java.util.Scanner;

public class DivisionDemo2 {

public static void main(String[] args) {

Scanner keyb = new Scanner(System.in);

try {

System.out.println("Enter numerator:");

int numerator = keyb.nextInt();

System.out.println("Enter denominator:");

int denominator = keyb.nextInt();

double quotient

= safeDivide(numerator, denominator);

System.out.println

(numerator + "/" + denominator

+ "=" + quotient);

}

catch(DivisionByZeroException e) {

System.out.println(e.getMessage());

secondChance();

}

System.out.println("End of program.");

}

public static double safeDivide

(int top, int bottom)

throws DivisionByZeroException {

if (bottom == 0)

throw new DivisionByZeroException();

return top/(double)bottom;

}

23

public static void secondChance() {

Scanner keyb = new Scanner(System.in);

try {

System.out.println("Enter numerator:");

int numerator = keyb.nextInt();

System.out.println("Enter denominator:");

int denominator = keyb.nextInt();

double quotient = safeDivide

(numerator, denominator);

System.out.println(numerator + "/"

+ denominator + "=" + quotient);

}

catch (DivisionByZeroException e) {

System.out.println

("I cannot do division by zero.");

System.out.println("Aborting program.");

System.exit(0);

}

}

}

