
1

CSC 175 – Intermediate

Programming

Lecture 5 –Strings

How Do Computer Handle

Character Data?

• Like all other data that a computer handles,

characters are stored in numeric form. A particular

code represents a particular character. The most

commonly used code is ASCII (American

Standard Code for Information Interchange). Java

uses a code called Unicode.

• A character variable can be declared by writing:

char c;

2

Example: Comparing Characters

import java.util.Scanner;

public class CharTest {

public static void main(String[] args) {

char char1 = 'a', char2 = 'b', char3 = 'A';

if (char1 > char2)

System.out.println("Very good");

else

System.out.println("Very bad");

if (char1 > char3)

System.out.println("Very good");

else

System.out.println("Very bad");

}

}

What are Objects?

• An object is similar to a variable, but it has
its own properties and methods that are
either written for it by the programmer or
are a part of the Java Development Kit
(JDK).

• When a programmer specifies all the
properties and methods that a group of
objects may have, (s)he has written a class
of objects.

3

What are Strings?

• A collection of characters that are read and written

together to form words, numbers and so on are

called strings. While strings are a built-in data

type in some programming languages, this is not

the case in Java; they are a standard class of

objects.

• Strings have certain methods that can be used to

manipulate them. At the same time, they can be

used in some ways that are like the basic data type

in Java, such as int, double and char.

How does Java handle strings?

• In Java, a string is declared as an object,
completed with a constructor call.
String s = new String();

• Strings can be assigned values in a similar way to
how numeric variables are assigned a value.
s = "This is a test";

• You can also initilize their value in the constructor
call.
String s = new

String("This is another test.");

4

Java String Constructor - Another Example

public class TestString {

public static void main(String[] args) {

String s = new String("This is the first");

String t = new String();

t = "This is the second";

System.out.println("Your string is \'" + s

+ "\'.");

System.out.println("Your other string is \'"

+ t + "\'.");

}

}

Output

Your string is 'This is the first'.

Your other string is 'This is the second'.

How does Java handle input and

output?

• In Java, it is very easy to read in data is as a string.

• Using a Scanner object, you can read in either up

to the next white space character (blank, tab or

newline) or the entire line.

• If you want to print a string, you use

System.out.println, System.out.print or

System.out.printf.

5

Java String Input/Output - An Example

import java.util.Scanner;

public class TestString {

public static void main(String[] args) {

Scanner keyb = new Scanner(System.in);

String s = new String();

System.out.println("Enter your string");

s = keyb.next();

System.out.println("Your string is \""

+ s + "\".");

System.out.println("Enter your string");

s = keyb.nextLine();

System.out.println("Your new string is \""

+ s + "\".");

}

}

Java String Input/Output – The output

Enter your string

This is the first

Your string is "This".

Enter your string

Your new string is " is the first".

6

The Java String methods

• The way in which you specify an object’s
method is to write:
objectName.methodName();

• s.length() - Returns the number of characters
in s

• s.trim() - Returns s with loading and trailing
white space characters removed.

• s.concat() - Returns s with another string
concatenated to it.

• s.substring() - Returns a substring of s

• s.indexOf() - Returns the starting position of
the first occurrence of a substring within s.

s.length()

• s.length() returns the number of characters that s

contains:

public class TestString {

public static void main(String[] args) {

String s = new String("This Is The " +

"First");

System.out.println(s.length());

}

}

• This program prints 17

7

s.trim()

• Returns s with leading and trailing white space characters

removed.

public static void main(String[] args) {

String s

= new String(" This Is The First ");

s = s.trim();

System.out.println("My String is \'" + s

+ "\'");

System.out.println("It has " + s.length()

+ " characters.");

}

• The output is:

My String is 'This Is The First'

It has 17 characters.

s.concat()

• s.concat() returns s with another string concatenated to

it.

• Example

public static void main(String[] args) {

String s = new String("John"),

t = new String("Smith"), u;

u = s.concat(t);

System.out.println("My String is \'" + u

+ "\'");

}

• Output

My String is 'JohnSmith'

8

s.concat()- Another Example

• We should remember the blank space between the first and

last names

public static void main(String[] args) {

String s = new String("John"),

t = new String("Smith"), u;

u = s.concat(" ");

u = u.concat(t);

System.out.println("My String is \'" + u

+ "\'");

}

• Output

My String is 'John Smith'

s.concat()- Another Example

• We don’t need the extra statement; we can cascade our

methods

public static void main(String[] args) {

String s = new String("John"),

t = new String("Smith"), u;

u = (s.concat(" ")).concat(t);

System.out.println("My String is \'"

+ u + "\'");

}

• Output
My String is 'John Smith'

The object

9

s.substring()

• s.substring() returns a substring of s.

• There are two such methods:

– s.substring(12) returns a substring of s that

contains everything after position 12.

– s.substring(12, 17) returns a substring

whose first character appears in position12 and

where the first character in s after the substring

is 17.

s.substring(12)- An Example

public static void main(String[] args) {

String s = new String(

"The quick brown fox jumped over the lazy dogs"),

t = new String();

t = s.substring(31);

System.out.println("My String is\n \'"

+ t + "\'");

}

• Output

My String is

'own fox jumped over the lazy dogs'

10

s.substring(12)- An Example

public static void main(String[] args) {

String s = new String(

"The quick brown fox jumped over the lazy dogs"),

t = new String();

t = s.substring(12);

System.out.println("My String is\n \'"

+ t + "\'");

}

• Output

My String is

'own fox jumped over the lazy dogs'

s.indexOf()

• s.indexOf()can be used to find where a substring appears

within s.

• Example

public static void main(String[] args) {

String

s = new String("John Francis Xavier Smith"),

t = new String();

int i = s.indexOf("Fran");

t = s.substring(i, i+7);

System.out.println("My String is \'" + t

+ "\'");

}

Output

My String is 'Francis'

11

s.charAt()

• s.charAt(i) returns the character at

position i.

• This is a useful tool if you need to extract a

single character from a string.

s.charAt() - An Example

public static void main(String[] args) {

String

s = new String("John Francis Johnson"),

int i = 6;

char c;

c = s.charAt(i);

System.out.println("Character # " + i

+ ” is " + c);

}

• Output

Character # 6 is r

12

Comparing Strings

• We do not use the normal relational

operators to compare strings, even though

the compiler will not give an error message.

This is something to be discussed at a later

date.

• We compare strings using the methods,

equals, equalsIgnoreCase and

compareTo.

String Comparison Methods

• s.equals(t) – true if s and t are the same

string

• s.equalsIgnoreCase(t)- true if s

and t differ in case only

• s.compareTo(t)

– is zero (0) if the s and t are the

same

– is positive if s comes after t

– is negative if s comes before t.

13

Collating Sequence

• The order in which characters are assumed to

appear is called the collating sequence.

• For now, we are most concerned with the

following facts about the collating sequence:

– Digits (0-9) come before letters.

– All 26 upper case letters come before the lower

case letters.

– Within upper case and within lower case, the

letters all fall within alphabetical order.

CompareStrings.java

import java.util.Scanner;

public class CompareStrings {

public static void main(String[] args) {

String s = new String("First");

String t = new String("first");

String u = new String("Second");

if (s.equals(t))

System.out.println("\'" + s + "\' and \'"

+ t + "\' are the same.");

else

System.out.println("\'" + s + "\' and \'"

+ t + "\' are different.");

14

if (s.equalsIgnoreCase(t))

System.out.println("\'" + s + "\' and \'"

+ t + "\' are almost the same.");

else

System.out.println("\'" + s + "\' and \'"

+ t + "\' are very different.");

if (s.compareTo(u) == 0)

System.out.println("\'" + s + "\' and \'"

+ u + "\' are the same.");

else if (s.compareTo(u) > 1)

System.out.println("\'" + s

+ "\' comes after \'"

+ u + "\'.");

else

System.out.println("\'" + s

+ "\' comes before \'"

+ u + "\'.");

if (s.compareTo(t) == 0)

System.out.println("\'" + s + "\' and \'"

+ t + "\' are the same.");

else if (s.compareTo(t) > 1)

System.out.println("\'" + s + "\' comes
after \'"

+ t + "\'.");

else

System.out.println("\'" + s + "\' comes
before \'"

+ t + "\'.");

}

}

15

Example: Writing Changing a Form Letter

• Let’s write a program to read a file and change

every occurrence of the name “John” to “Robert”

• Initial algorithm:

1. Instruct the user

2. Change every occurrence on each line of

“John” to “Robert

Refining the Form Letter Algorithm

1. Instruct the user

2. Change every occurrence on each line of

“John” to “Robert

2.1 Get the first line

2.2 As long as it isn’t “The End”, replace

every occurrence of John with Robert

16

Refining the Form Letter Algorithm

1. Instruct the user

2.1 Get the first line

2.2 As long as it isn’t “The End”, replace

every occurrence of John with Robert

2.2 WHILE the line ≠ “The End”

2.2.1 Replace each occurrence of “John” with Robert

2.2.2 Print the new line

2.2.3 Get the next line

Refining the Form Letter Algorithm

1. Instruct the user

2.1 Get the first line

2.2 WHILE the line ≠ “The End”

2.2.1 Replace each occurrence of “John” with Robert

2.2.2 Print the new line

2.2.3 Get the next line

2.2.1.1 Create a substring of everything up to the

first occurrence of “John” WHILE the line ≠ “The End”

2.2.1.2 Concatenate “Robert” at the end of this substring

2.2.1.3 Concatenate the input string after John to this

Substring

2.2.1.4 This replaces the input string

17

1. Instruct the user

2.1 Get the first line

2.2 WHILE the line ≠ “The End”

2.2.1.1 Create a substring of everything up to the

first occurrence of “John” WHILE the line ≠ “The End”

2.2.1.2 Concatenate “Robert” at the end of this substring

2.2.1.3 Concatenate the input string after John to this

Substring

2.2.1.4 This replaces the input string

2.2.2 Print the new line

2.2.3 Get the next line

System.out.println("Please begin typing. "

+ " End by typing \'The End\'");

inString = keyb.nextLine();

System.out.println("Please begin typing. "

+ " End by typing \'The End\'");

inString = keyb.nextLine();

2.2 WHILE the line ≠ “The End”

2.2.1.1 Create a substring of everything up to the

first occurrence of “John” WHILE the line ≠ “The End”

2.2.1.2 Concatenate “Robert” at the end of this substring

2.2.1.3 Concatenate the input string after John to this

Substring

2.2.1.4 This replaces the input string

2.2.2 Print the new line

2.2.3 Get the next line

while

(!inString.equalsIgnoreCase("The End")) {

18

System.out.println("Please begin typing. "

+ " End by typing \'The End\'");

inString = keyb.nextLine();

while

(!inString.equalsIgnoreCase("The End")) {

2.2.1.1 Create a substring of everything up to the

first occurrence of “John” WHILE the line ≠ “The End”

2.2.1.2 Concatenate “Robert” at the end of this substring

2.2.1.3 Concatenate the input string after John to this

Substring

2.2.1.4 This replaces the input string

2.2.2 Print the new line

2.2.3 Get the next line
}

outString

= inString.substring(0,indexOfJohn);

System.out.println("Please begin typing. "

+ " End by typing \'The End\'");

inString = keyb.nextLine();

while

(!inString.equalsIgnoreCase("The End")) {

outString

= inString.substring(0,indexOfJohn);

2.2.1.2 Concatenate “Robert” at the end of this substring

2.2.1.3 Concatenate the input string after John to this

Substring

2.2.1.4 This replaces the input string

2.2.2 Print the new line

2.2.3 Get the next line
}

outString = outString.concat("Robert");

19

System.out.println("Please begin typing. "

+ " End by typing \'The End\'");

inString = keyb.nextLine();

while

(!inString.equalsIgnoreCase("The End")) {

outString

= inString.substring(0,indexOfJohn);

outString = outString.concat("Robert");

2.2.1.3 Concatenate the input string after John to this

Substring

2.2.1.4 This replaces the input string

2.2.2 Print the new line

2.2.3 Get the next line
}

outString = outString.concat(

inString.substring(indexOfJohn+4));

System.out.println("Please begin typing. "

+ " End by typing \'The End\'");

inString = keyb.nextLine();

while

(!inString.equalsIgnoreCase("The End")) {

outString

= inString.substring(0,indexOfJohn);

outString = outString.concat("Robert");

outString = outString.concat(

inString.substring(indexOfJohn+4));

2.2.1.4 This replaces the input string

2.2.2 Print the new line

2.2.3 Get the next line
} inString = outString;

20

System.out.println("Please begin typing. "

+ " End by typing \'The End\'");

inString = keyb.nextLine();

while

(!inString.equalsIgnoreCase("The End")) {

outString

= inString.substring(0,indexOfJohn);

outString = outString.concat("Robert");

outString = outString.concat(

inString.substring(indexOfJohn+4));

inString = outString;

2.2.2 Print the new line

2.2.3 Get the next line
}

System.out.println(outString);

System.out.println("Please begin typing. "

+ " End by typing \'The End\'");

inString = keyb.nextLine();

while

(!inString.equalsIgnoreCase("The End")) {

outString

= inString.substring(0,indexOfJohn);

outString = outString.concat("Robert");

outString = outString.concat(

inString.substring(indexOfJohn+4));

inString = outString;

System.out.println(outString);

2.2.3 Get the next line
}

inString = keyb.nextLine();

21

Example: ChangeLetter.java

import java.util.Scanner;

public class ChangeLetter {

// Change every occurrence of "John" in the

// text of a form letter to "Robert"

public static void main(String[] args) {

Scanner keyb = new Scanner(System.in);

// There are two strings - the input string

// inString and the output string outString

String inString = new String(),

outString = new String();

// indexOfJohn is the position within the

// string where the next occurrence of John

// begins.

int indexOfJohn;

// Prompt the user and instruct him.her how

// to indicate the end of the letter

System.out.println("Please begin typing. "

+ " End by typing \'The End\'");

inString = keyb.nextLine();

// Keep changing as long as (s)he didn't

// type "the end"

while

(!inString.equalsIgnoreCase("The End")) {

// Find the occurrence of John

indexOfJohn = inString.indexOf("John");

22

// As long as there are more occurrences of

// John, replace it with Robert

while (indexOfJohn != -1){

// create a string with everything up to

// "John"

outString

= inString.substring(0,indexOfJohn);

// Add "Robert" at the end of the

// substring

outString = outString.concat("Robert");

// Concatenate everything in the input

// string after the next occurrence of

// "John"

outString = outString.concat(

inString.substring(indexOfJohn+4));

// This replaces the input string – get

// the new value for indexOfJohn

inString = outString;

indexOfJohn = inString.indexOf("John");

}

// Output the new line of text

System.out.println(outString);

// Get the next line

inString = keyb.nextLine();

}

}

}

