
CSC 175 - Intermediate

Programming

Lecture #2 - Conditional Loops and

Modular Programming

The Problem with Counting Loops

• Counting loops allows us to perform a
statement or a block of statements a certain
number of times.

• The problem is that we do not always know
exactly how many times to perform the
statements in a loop in every situation.

The Problem with Counting Loops (continued)

• Let’s take another look at our payroll

program:

– We do not always know how payroll records

that we have.

– It isn’t very convenient to have to count the

records, especially if it’s a big number.

– Wouldn’t it be better if we could keep going

until we enter some special value to tell the

computer to stop?

Conditional Loops

• Conditional loops allow us to do this.

• Conditional loops keep repeating as long as

some condition is true (or until some

condition becomes true).

• Steps in solving a problem that involve

while, until, as long as indicate a

conditional loop.

While Loops

• The most common form of conditional

loops are while loops.

• In Java, they have the form:
while (condition)

statement;

or

while(condition) {

statements

}

A simple example - KeepAsking

import java.util.Scanner;

public class PickPositive {

// A simple example of how while works

public static void main(String[] args) {

Scanner keyb = new Scanner(System.in);

int number;

//Get your first number

System.out.println

("Hi there. Pick a positive integer");

number = keyb.nextInt();

//Keep reading number as long as they are

// positive

while (number > 0) {

System.out.println

("Pick another positive integer");

number = keyb.nextInt();

}

System.out.println

(number + " is not a positive integer");

}

}

Sentinel Value

• Often conditional loops continue until some

special value is encountered in the input

which effectively tells the program to stop

running the loop. This is called a sentinel

value because it is the value for which we

are watching.

• -1 is the sentinel value in the GPA

algorithm’s main loop

The TestAverage Program

import java.util.Scanner;

public class CalcGrade {

// Calculates the average test grade and

// converts it to a letter grade assuming that

// A is a 90 average, B is an 80 average and so

// on.that

public static void main(String[] args) {

Scanner keyb = new Scanner(System.in);

final int sentinelGrade = -1;

int thisGrade, numTests = 0, total, thisGrade;

float testAverage;

char courseGrade;

// Initially, the total is 0

total = 0;

// Get the first grade

System.out.println

("What grade did you get on your first test ?");

System.out.println("Enter -1 to end");

thisGrade = keyb.nextInt();

//Add up the test grades

while (thisGrade != sentinelGrade) {

// Make sure that the grades are valid percentages

if (thisGrade > 100)

System.out.println

("This is not a valid test grade.");

else if (thisGrade >= 0) {

total = total + thisGrade;

numTests;++

else

System.out.println

("This is not a valid test grade.");

System.out.println

("What grade did you get on this test ?");

thisGrade = keyb.nextInt();

}

// Find the average

testAverage = total/numTests;

// Find the letter grade corresponding to the average

if (testAverage >= 90)

courseGrade = 'A';

else if (testAverage >= 80)

courseGrade = 'B';

else if (testAverage >= 70)

courseGrade = 'C';

else if (testAverage >= 60)

courseGrade = 'D';

else

courseGrade = 'F';

// Print the results.

System.out.println("Your test average is "

+ testAverage);

System.out.println("Your grade will be “

+ courseGrade);

}

}

Magic Number Problem

• The magic number game involves guessing
a number and with each wrong guess, the
player is told “too high” or “ too low”. The
goal is to guess the number in the smallest
number of tries.

• We need a method for having the computer
pick a number at random for the player to
guess.

• We will need to learn about how to use
“library functions” to provide us with the
magic number.

import and Standard Classes (rand)

• It is frequently helpful to be able to use software
routines that have already been written for
common tasks.

• System.out.println and
keyb.nextInt() are examples of this.

• import allows us to access entire libraries of
routines that are part of one or more classes

• When we write:
import java.util.Scanner;

We are telling the Java compiler where to find the
definitions of the Scanner class.

import and Standard classes (Random)

• To use the random number function, we need to include

import java.util.*;

• This tells the computer that java.util contains
subdirectories with class definitions that it will need to use.

• A class is similar to a data type but it can be defined by a
programmer or may come as a standard part of the
programming language. Classes need to be initialized
before use:

Scanner keyb = new Scanner(System.in);

• The name of the random number function that we want is
nextInt() – it is part of the object that we will declare
called newRandomNumber.

The Magic Number Program

import java.util.*;

public class MagicNumber {

// The magic number game has the user trying to

// guess which number between 1 and 100 the

// computer has picked

public static void main(String[] args) {

Scanner keyb = new Scanner(System.in);

Random newRandomNumber = new Random();

int magic, guess;

int tries = 1;

// Use the random number function to pick a

// number

magic = newRandomNumber.nextInt(100) + 1;

// Let the user make a guess

System.out.println("Guess ?");

guess = keyb.nextInt();

while (guess != magic) {

// If the user won, tell him/her

if (guess == magic) {

System.out.println("** Right!! ** ");

System.out.println(magic

+ " is the magic number\n");

}

// Otherwise tell him whether it's too high

// or too low

else if (guess > magic)

System.out.println

(".. Wrong .. Too high\n");

else

System.out.println(".. Wrong .. Too low\n");

// Let the user make another guess

System.out.println("Guess ?");

guess = keyb.nextInt();

tries++;

}

// Tell the user how many guesses it took

System.out.println("You took " + tries

+ " guesses\n");

}

}

Declaring Boolean Constants

• If we want to work with true and false we

can work with boolean variables.

• We can write:
boolean married = true;

… … … …

if (married)

System.out.println("The employee is

married\n");

! operator

• Sometimes we want to test to see if a
condition is not true.

• We can do this by using the not operator,

which is written as !:

if (!married)

System.out.println("Do you"

+ " want to bring a"

+ " date? ");

&& and || Operators

• Sometimes there may be two or more conditions

to consider.For this reason we have the && (AND)

and || (OR) operators.

• If we declare

• boolean p, q;

• …

• Both p and q must be true for p && q to be true.

• p || q is true unless both p and q are false.

do.. while loops

• You may have noticed that we asked the user

twice for same information - the number (s)he is

guessing.

• Some loops really require that the condition be at

the end - not at the beginning.

• In Java, we have the do.. while loop, whose syntax

is:

do {

statement(s)

} (condition)

Revisiting the magic number program

• The main loop in the magic number program becomes:

do{

// Let the user make a guess

System.out.println("Guess: “);

guess = keyb.nextInt();

// If the user won, tell him/her

if (guess == magic) {

System.out.println("** Right!! ** ");

System.out.println(magic

+ " is the magic number\n");

}

Revisiting the magic number program (continued)

// Let the user make another guess

else if (guess > magic)

System.out.println(".. Wrong .. Too high\n");

else

System.out.println(".. Wrong .. Too low\n");

tries++;

} while (guess != magic);

What are methods?

• We have seen a few examples of procedures (in
Java, we call them methods):
– System.out.println, which we have used to

display output on the screen

– Keyb.nextInt, which we have used to get integer
inputs from the keyboard

– newRandomNumber.nextInt(), which we have
used to get a random numbers

• Functions allow us to use software routines that
have already been written (frequently by other
people) in our programs.
E.g., magic = newRandomNumber.nextInt();

What are parameters?

• A parameter is a value or a variable that is used to
provide information to a function that is being
called.

• If we are writing a function to calculate the square
of a number, we can pass the value to be squared
as a parameter:

printSquare(5);

printSquare(x)

• These are called actual parameters because these
are the actual values (or variables) used by the
function being called.

actual parameter

Formal Parameters

• Functions that use parameters must have them
listed in the function header. These parameters are
called formal parameters.

public static void printSquare(double x) {

double square;

square = x*x;

System.out.println("The square of "

+ x + " is " + square);

}
formal parameters

Parameter Passing
printSquare(5);

printSquare(x)

public static void printSquare(double x)

{

double square;

square = x*x;

System.out.println("The square of "

+ x + " is " + square);

}

In both cases, calling the function requires copying the

actual parameter’s value where the function can use it.

Initially, x has whatever value the actual parameter has.

Parameter Passing (continued)

printSquare(5)

x initially is set to 5.

square is then set to the

value of x2 or 52 or 25.

public static void printSquare(double x)

{

double square;

square = x*x;

System.out.println("The square of "

+ x + " is " + square);

}

Parameter Passing (continued)

printSquare(x)

public static void printSquare(double x)

{

double square;

square = x*x;

System.out.println("The square of "

+ x + " is " + square);

}

x initially is set to whatever value x

had in the main program. If x had the

value 12, square is then set to the

value of x2 or 122 or 144.

The Squares Program

import java.util.Scanner;

public class Squares {

// main() - A driver for the print_square

// function

public static void main(String[] args) {

Scanner keyb = new Scanner(System.in);

double value;

// Get a value and print its square

System.out.println("Enter a value ?");

value = keyb.nextDouble();

printSquare(value);

}

the actual parameter

in the function call

// printSquare() - Prints the square of whatever

// value that it is given.

public static void print_square(double x) {

double square;

square = x*x;

System.out.println("The square of " + x

+ " is " + square);

}

}

the actual parameter

in the function call

Passing Parameters - When The User

Inputs 12

Value x

square

12 12

144

Passing Parameters - When The User

Inputs 6

Value x

square

6 6

36

A Rewrite of main

import java.util.Scanner;

public class Squares2 {

// main() - A driver for the print_square

// function

public static void main(String[] args) {

double value1 = 45, value2 = 25;

printSquare(value1);

printSquare(value2);

}

Passing Parameters - Using square Twice In One Program

Value1 x

square

45 45

2025

Value1

x

square

45

25

625

Value2 25

Value2 25

A program to calculate Grade Point Average

Example - Ivy College uses a grading system, where the

passing grades are A, B, C, and D and where F (or any other

grade) is a failing grade. Assuming that all courses have equal

weight and that the letter grades have the following numerical

value:
Letter grade Numerical value

A 4

B 3

C 2

D 1

F 0

write a program that will calculate a student's grade point

average.

Let’s Add– Dean’s List

• Let’s include within the program a method

that will print a congratulatory message if

the student makes the Dean’s List.

• We will write a function deansList that

will print the congratulatory message and

another method printInstructions.

A program to calculate Grade Point Average

Input - The student's grades

Output - Grade point average and a congratulatory message (if

appropriate)
Other information

"A" is equivalent to 4 and so on

GPA = Sum of the numerical equivalents/ Number of grades

Our first step is to write out our initial algorithm:

1. Print introductory message

2. Add up the numerical equivalents of all the grades

3. Calculate the grade point average and print it out

4. Print a congratulatory message (if appropriate)

The Entire DeansList Program

import java.util.Scanner;

public class DeansList {

// Calculates a grade point average assuming

// that all courses have the same point value

// and that A, B, C and D are passing grades and

// that all other grades are failing.

public static void main(String[] args) {

Scanner keyb = new Scanner(System.in);

int numCourses = 0;

char grade;

String inputString = new String();

double gpa, total = 0;

printInstructions();

// Get the first course grade

System.out.println("What grade did you get in"

" your first class?");

inputString = keyb.next();

grade = inputString.charAt(0);

// Add up the numerical equivalents of

// the grades

while (grade != 'X') {

//Convert an A to a 4, B to a 3, etc.

// and add it to the total

if (grade == 'A')

total = total + 4;

else if (grade == 'B')

total = total + 3;

else if (grade == 'C')

total = total + 2;

else if (grade == 'D')

total = total + 1;

else if (grade != 'F')

System.out.println("A grade of " + grade

+ " is assumed to be an F\n");

numCourses++;

// Get the next course grade

System.out.println

("What grade did you get in the"

+ " next class?");

inputString = keyb.next();

grade = inputString.charAt(0);

}

// Divide the point total by the number of

// classes to get the grade point average

// and print it.

gpa = total / numCourses;

System.out.printf

("Your grade point average is %4.2f\n", gpa);

deansList(gpa);

}

// printInstructions() - Prints instructions

// for the user

public static void printInstructions() {

// Print an introductory message

System.out.println

("This program calculates your grade point"

+ " average\n");

System.out.println

("assuming that all courses have the same"

+ "point \n");

System.out.println

("value. It also assumes that grades of "

+ "A, B, C and D\n");

System.out.println

("are passing and that all other grades "

+ "are failing.\n");

System.out.println

("To indicate that you are finished, "

+ "enter a grade of \'X\'\n\n");

}

// printInstructions() - Prints instructions

// for the user

public static void printInstructions() {

// Print an introductory message

System.out.println

("This program calculates your grade point"

+ " average\n");

System.out.println

("assuming that all courses have the same"

+ "point \n");

System.out.println

("value. It also assumes that grades of "

+ "A, B, C and D\n");

System.out.println

("are passing and that all other grades "

+ "are failing.\n");

System.out.println

("To indicate that you are finished, "

+ "enter a grade of \'X\'\n\n");

}

// deansList() - Print a message if (s)he made

// dean's list

public static void deansList(double gpa) {

if (gpa >= 3.2)

System.out.println

("Congratulations!! You made"

+ " dean\'s list!!\n\n");

}

}

Example – x to the nth power

• Let’s write a function to calculate x to the

nth power and a driver for it (a main

program whose sole purpose is to test the

function.

• Our basic algorithm for the function:

– Initialize (set) the product to 1

– As long as n is greater than 0:

• Multiply the product by x

• Subtract one from n

power Program

import java.util.Scanner;

public class Power {

// A program to calculate 4-cubed using a

// function called power

public static void main(String[] args) {

double x, y;

int n;

x = 4.0;

n = 3;

y = 1.0;

power(y, x, n);

System.out.println("The answer is " + y);

}

// power() - Calculates y = x to the nth power

public static void power(double y,

double x, int n) {

y = 1.0;

while (n > 0) {

y = y * x;

n = n - 1;

}

System.out.println("Our result is " + y);

}

}

The Output From power

Our result is 64

The answer is 1
Shouldn’t these be the

same numbers?

The problem is that communication using

parameters has been one-way – the function

being called listens to the main program , but the

main program does not listen to the function.

Value Parameters

• The parameters that we have used all pass

information from the main program to the

function being called by copying the values

of the parameters. We call this passing by

value, because the value itself is passed.

• Because we are using a copy of the value

copied in another location, the original is

unaffected.

Methods and Functions

• Some methods perform specific tasks and

do not produce any one data item that seem

to be their whole reason for existence.

• Other methods are all about producing some

value or data item; in many programming

languages they are called functions.

void Functions

• Normally a function is expected to produce some result
which is returns to the main program:

average = calcAverage(x, y, z);

• The data type of the function’s result is also called the
function’s type.
– Functions that produce an integer are called integer functions.

– Functions that produce float value are called float functions.

– Functions that do not produce a result are called void functions

• When we write
public void printSquare(int x);

it means that the function is not expected to return a
result.

Writing Functions That Return Results

• We can write a function that returns a result by replacing that void with
a data type:

public double average3(int a, int b, int c);

public double average3(int a, int b, int c) {

float sum, mean;

sum = a + b + c;

mean = sum / 3;

return mean;

}
The result that we are

returning is mean

Writing Functions That Return Results

• The syntax is:

return expression;

• Return statements have contain expressions,

variables, constants or literals:

return true;

return 35.4;

return sum;

return sum/3;

Rewriting the average3 Function

public double average3(int a, int b, int c)

{

float sum, mean;

sum = a + b + c;

return sum / 3;

}

Maximum and Minimum

• Let’s write a pair of functions that find the

minimum and maximum of two values a and b.

• Initial algorithm for maximum:

Return the larger of a and b:

• If we refine this:

1.1 IF a > b return a

1.1 else return b //a < = b

•For minimum, we replace > with <

public double maximum(float x, float y)

{

if (x > y)

return(x);

else

return(y);

}

public double minimum(float x, float y)

{

if (x < y)

return(x);

else

return(y);

}

Rewriting the Payroll Program

import java.util.Scanner;

public class Payroll3 {

// A simple payroll progam that uses a method

// to calculate the gross pay

public static void main(String[] args) {

Scanner keyb = new Scanner(System.in);

double hours, rate, pay;

// Ask the user for payrate

System.out.println

("What is rate of pay for the employee?");

rate = keyb.nextDouble();

// Enter the hours worked

System.out.println("Enter the hours worked?");

hours = keyb.nextInt();

// Get the gross pay

pay = gross(hours, rate);

System.out.printf

("Gross pay is $%4.2f\n",pay);

}

// gross() - Calculate the gross pay.

public static double gross(double hours,

double rate) {

double pay;

// If hours exceed 40, pay time and a half

if (hours > 40)

pay = 40*rate + 1.5*rate*(hours-40);

else

pay = rate * hours;

return pay ;

}

}

return

• return serves two purposes:

– It tells the computer the value to return as the

result.

– It tell the computer to leave thje function

immediately and return the main program.

// gross() - Calculate the gross pay.

public static double gross(double hours,

double rate) {

// If hours exceed 40, pay time and a half

if (hours > 40)

return(40*rate + 1.5*rate*(hours-40));

return(rate*hours);

}

Rewriting pow

• We can make the pow function tell the main

program about the change in y by having it

return the value as the result:
public static double power(double x,

int n) {

… …

}

The rewritten pow program

import java.util.Scanner;

public class PowerTest {

// A program to calculate 4-cubed using a

// function called power

public static void main(String[] args) {

double x, y;

int n;

x = 4.0;

n = 3;

y = power(x, n);

System.out.println("The answer is " + y);

}

// power() - Calculates y = x to the nth

// power

public static double power(double x, int n) {

double prod;

prod = 1.0;

while (n > 0) {

prod = prod * x;

n = n - 1;

}

System.out.println("Our result is "

+ prod);

return prod;

}

}

The New Output From power

Our result is 64

The answer is 64
Exactly what we would

expect Why?

Communication using the result is two-way – the

function being called listens to the main program,

but the main program listens to the function

because data changes are explicitly passed back

to the main method.

An Example – square2

• Let’s rewrite the square program so that the function

calculates the square and passes its value back to the main

program, which will print the result:

import java.util.Scanner;

public class Square2 {

// This illustrates how to use methods to

// find the square of a value

// main() - A driver for the findSquare method

public static void main(String[] args) {

Scanner keyb = new Scanner(System.in);

double value, square;

System.out.println("Enter a value ?");

value = keyb.nextDouble();

square = findSquare(value);

System.out.println("The square of " + value

+ " is " + square);

}

// findSquare() - Calculates the square of

// whatever value it is given.

public static double findSquare(double x) {

double square = x*x;

return square;

}

}

Comparing print_square and find_square

• What are the differences between print_square
and find_square?

• print_square:

– uses value parameters

– prints the square; it doesn’t have to pass that
value to the main program

• find_square:

– Returns the result

– does not print the square; it must pass the value
back to the main program

Example: Average3

• Let’s write a program which will find the

average of three numbers:

• Our algorithm is:

1. Read the values

2. Calculate the average

3. Print the average

Average3c.java
import java.util.Scanner;

public class Average3c {

// Find the average of three numbers using a

// function

public static void main(String[] args) {

int value1, value2, value3;

double average;

//Get the inputs

value1 = getValue();

value2 = getValue();

value3 = getValue();

// Call the function that calculates the

// average

average = findAverage(value1, value2, value3);

System.out.println

("The average is " + average);

}

// getValue() - Prompt the user and read a value

public static int getValue() {

Scanner keyb = new Scanner(System.in);

System.out.println("Enter a value ?");

int x = keyb.nextInt();

return x;

}

// find_average() - Find the average of three

// numbers

public static double findAverage(int x, int y,

int z) {

double sum = x + y + z;

double average = sum / 3;

return average;

}

}

Preconditions and Postconditions

• Preconditions – are conditions that we expect and

require to be true before entering the procedure

• Postconditions– are conditions that we expect and

require to be true after exiting the procedure

• Examples in square3:

– getinput has a postcondition that a value was read in

and that the value is set.

– find average has a precondition that all value1, value2

and value al have values.

