
CSC 175 - Intermediate

Programming

Lecture 1 - An Introduction to

Programming in Java

A First Program

public class MyFirstjava {

public static void main(String[] args) {

System.out.println

("This is my first Java program.");

}

}

Class header

Method header

statements
Close braces mark

the end

Open braces mark

the beginning

A First Program – What Does It Do?

Prints the message
This is my first Java program.

Ends the line

System.out.println

("This is my first Java program.");

Writing Our Second Program

public class Average3 {

public static void main(String[] args) {

int sum, average;

sum = 2 + 4 + 6;

average = sum / 3;

System.out.println("The average is " +
average);

}

}

Tells the computer that sum and average are integers

Writing Our Second Program

public class Average3a {

public static void main(String[] args) {

int sum;

int average;

sum = 2 + 4 + 6;

average = sum / 3;

System.out.println("The average is " +

average);

}

}

We could also write this as two separate declarations.

Variables and Identifiers

• Variables have names – we call these names

identifiers.

• Identifiers identify various elements of a

program (so far the only such element are

the variables.

• Some identifiers are standard (such as
System)

Identifier Rules

• An identifier must begin with a letter or an
underscore _

• Java is case sensitive upper case (capital) or lower
case letters are considered different characters.
Average, average and AVERAGE are three
different identifiers.

• Numbers can also appear after the first character.

• Identifiers can be as long as you want but names
that are too long usually are too cumbersome.

• Identifiers cannot be reserved words (special
words like int, main, etc.)

Some Illegal Identifiers

timeAndAHalf& is not

allowed

time&ahalf

fourTimesFive* is not allowedfour*five

times2 or

twoTimes

Cannot begin

with a number

2times

myAgeBlanks are not

allowed

my age

Suggested IdentifierReasonIllegal

Identifier

Assignment Statements

• Assignment statements take the form:

variable = expression

Memory location where

the value is stored Combination of constants

and variables

Expressions

• Expressions combine values using one of
several operations.

• The operations being used is indicated by
the operator:

+ Addition

- Subtraction

* Multiplication

/ Division

Expressions – Some Examples

2 + 5

4 * value

x / y

Another Version of Average

• Let’s rewrite the average program so it can
find the average any 3 numbers we try:

• We now need to:

1. Find our three values

2. Add the values

3. Divide the sum by 3

4. Print the result

The Scanner Class

• Most programs will need some form of

input.

• At the beginning, all of our input will come

from the keyboard.

• To read in a value, we need to use an object

belonging to a class called Scanner:

Scanner keyb = new Scanner(System.in);

Reading from the keyboard

• Once we declare keyb as Scanner, we can

read integer values by writing:

variable = keyb.nextInt();

import java.util.Scanner;

public class Average3b {

public static void main(String[] args) {

int sum, average;

Scanner keyb = new Scanner(System.in);

System.out.println

("What is the first value\t?");

int value1 = keyb.nextInt();

System.out.println

("What is the second value\t?");

int value2 = keyb.nextInt();

System.out.println

("What is the third value\t?");

int value3 = keyb.nextInt();

sum = value1 + value2 + value3;

average = sum / 3;

System.out.println("The average is "

+ average);

}

}

Another example – calculating a payroll

• We are going to write a program which calculates

the gross pay for someone earning an hourly

wage.

• We need two pieces of information:

– the hourly rate of pay

– the number of hours worked.

• We are expected to produce one output: the gross

pay, which we can find by calculating:

– Gross pay = Rate of pay * Hours Worked

import java.util.Scanner;

public class Payroll {

public static void main(String[] args) {

Scanner keyb = new Scanner(System.in);

System.out.println

("What is your hourly pay rate?");

double rate = keyb.nextDouble();

System.out.println

("How many hours did you work?");

double hours = keyb.nextDouble();

double gross = rate * hours;

System.out.println("Your gross pay is $"

+ gross);

}

}

Comments

• Our program is a bit longer than our previous programs
and if we did not know how to calculate gross pay, we
might not be able to determine this from the program
alone.

• It is helpful as programs get much longer to be able to
insert text that explains how the program works. These are
called comments. Comments are meant for the human
reader, not for the computer.

• In Java, anything on a line after a double slash (//) is
considered a comment.

• Longer comments can also be contained between /* and
*/

import java.util.Scanner;

public class Payroll {

// This program calculates the gross pay for an

// hourly worker

// Inputs - hourly rate and hours worked

// Output - Gross pay

public static void main(String[] args) {

Scanner keyb = new Scanner(System.in);

// Get the hourly rate

System.out.println

("What is your hourly pay rate?");

double rate = keyb.nextDouble();

// Get the hours worked

System.out.println

("How many hours did you work?");

double hours = keyb.nextDouble();

// Calculate and display the gross pay

double gross = rate * hours;

System.out.println("Your gross pay is $"

+ gross);

}

}

Character Data

• All of our programs so far have used

variables to store numbers, not words.

• We can store single characters by writing:

char x, y;

– x and y can hold one and only one character

• For now, we use character data for input and

output only.

Character Strings

• We are usually interested in manipulating more
than one character at a time.

• We can store more than one character by writing:
String s = new String();

• If we want s can hold to have some initial value,
we can write:
String s

= new String("Initial value");

• For now, we use character data for input and
output only.

A program that uses a character variable

import java.util.Scanner;

public class Polite {

// A very polite program that greets you by name

public static void main(String[] args) {

String name = new String();

Scanner keyb = new Scanner(System.in);

// Ask the user his/her name

System.out.println("What is your name?");

name = keyb.next();

// Greet the user

System.out.println("Glad to meet you, " + name);

}

}

if and if-else

• Some problems may have a set of

instructions that are only performed under
some conditions. These require an if

construct.

• Other problems may have two or more

alternative sets of instructions depending on

some condition(s). If there are two

alternatives, it requires an if-else construct.

if and if-else (continued)

• The general form is:
if (expression)

statement;

or
if (expression)

statement;

else

statement;

Example – Is It Negative?

• Example – Write a program that determine

if a number is negative or non-negative

• Our algorithm (recipe for a program):

– Get the number

– Print whether its negative or non-negative

IsItNegative.java

import java.util.Scanner;

public class IsItNegative {

// Tell a user if a number is negative or

// non-negative

public static void main(String[] args) {

Scanner keyb = new Scanner(System.in);

// Ask the user for a number

System.out.println

("Please enter a number?");

double number = keyb.nextDouble();

// Print whether the number is negative or

// not

if (number < 0.0)

System.out.println(number

+ " is a negative number");

else

System.out.println(number

+ " is NOT a negative number");

}

}

Relational operators

-x +7 <= 10less than or equal

to

<=

x+1 >= 0greater than or

equal to

>=

x-1 < 2*xless than<

x+1 > ygreater than>

1 != 0is not equal to!=

x == yequals==

ExampleMeaningOperator

Example – Calculating Speed

• Example - Calculate the speed that you are
driving from the distance and time that you have
been driving. If you are going over the speed limit,
print a warning message.

• We know the following about our problem:

Available input:
• Distance in miles

• Time in hours

Required output:
• Speed in miles per hour

• Warning message (if appropriate)

The Complete Speed Program

import java.util.Scanner;

public class Speed {

// Calculate the speed that you are traveling

// from the distance and time that you have

// been driving.

// Print a warning if you are going over the

// speed limit.

public static void main(String[] args) {

Scanner keyb = new Scanner(System.in);

// Read in the distance in miles and

// time driven

System.out.println

("How many miles have you driven?");

double miles = keyb.nextDouble();

System.out.println

("How many hours did it take?");

double hours = keyb.nextDouble();

// Calculate and print the speed

double speed = miles / hours;

System.out.println("You were driving at "

+ speed + " miles per hour.");

// Print the warning if appropriate

if (speed > 55)

System.out.println("**BE CAREFUL!**"

+ "You are driving too fast!");
}

}

Constants

• Let's re-examine the statement in our program

ConvertPounds2 that does the actual

conversion:
kg = lbs / 2.2;

• Where does come 2.2 from? (There are 2.2

pounds per kilogram)

• How would know why we use 2.2 if we are

not familiar with the problem?

ConvertPounds

import java.util.Scanner;

public class ConvertPounds {

// Convert pounds to kilograms

// Input - weight in pounds

// Output - weight in kilograms

public static void main(String[] args) {

Scanner keyb = new Scanner(System.in);

final double lbsPerKg = 2.2;

// Get the weight in pounds

System.out.println

("What is the weight in pounds?");

double lbs = keyb.nextDouble();

// Ensure that the weight in pounds is

// valid. If it is valid, calculate and

// display the weight in kilograms

if (lbs < 0)

System.out.println(lbs

+ " is not a valid weight.");

else {

double kg = lbs / lbsPerKg;

System.out.println("The weight is "

+ kg + " kilograms");

}

}

}

Declaring Constants

•The general form of the constant declaration is:
final datatype ConstantName =

ConstantValue,

AnotherConstantName =

AnotherConstantValue;

•Let's take a look at a few examples of constants:
final double withholdingRate = 0.8;

final char prompt = 'y';

final String answer = "yes";

final int maxPeople = 15,

inchPerFt = 12;

final int speedLimit = 55;

Compound Decisions

• Being able to do more than one statement is

helpful:
if (lbs < 0)

System.out.println(lbs

+ " is not a valid weight.");

else {

kg = lbs / lbsperkg;

System.out.println("The weight is "

+ kg + " kilograms");

}

Blocks

• Any place in a Java where a statement can
appear, a block can also appear.

• A block is a set of statements between

opening and closing braces ({ }).

• Example:
if (x > y) {

System.out.println("x is larger");

max = x;

}

An Auto Insurance Program

• Example - Write a program to determine the cost of an
automobile insurance premium, based on driver's age and
the number of accidents that the driver has had.

• The basic insurance charge is $500. There is a
surcharge of $100 if the driver is under 25 and an
additional surcharge for accidents:

of accidents Accident Surcharge

1 50

2 125

3 225

4 375

5 575

6 or more No insurance

An Auto Insurance Program (continued)

• Available input

– Number of accidents

– driver age

• Required output

– Insurance charge.

The Final Insurance Program

import java.util.Scanner;

public class CarInsurance {

// A program to calculate insurance premiums

// based on the driver’s age and accident

// record.

public static void main(String[] args) {

Scanner keyb = new Scanner(System.in);

final double basicRate = 500;

double rate;

int age, numAccidents;

int ageSurcharge = 0,

accidentSurcharge = 0;

boolean error = false, tooMany = false;

// Input driver's age and number of

// accidents

System.out.println

("How old is the driver?");

age = keyb.nextInt();

System.out.println("How many accidents has "

+ "the driver had?");

numAccidents = keyb.nextInt();

// Determine if there is an age surcharge

if (age < 0)

error = true;

else if (age < 25)

ageSurcharge = 100;

else

ageSurcharge = 0;

// Determine if there is a surcharge

if (numAccidents < 0)

error = true;

else if (numAccidents == 0)

accidentSurcharge = 0;

else if (numAccidents == 1)

accidentSurcharge = 50;

else if (numAccidents == 2)

accidentSurcharge = 125;

else if (numAccidents == 3)

accidentSurcharge = 225;

else if (numAccidents == 4)

accidentSurcharge = 375;

else if (numAccidents == 5)

accidentSurcharge = 575;

else

tooMany = true;

// Print the charges

if (error)

System.out.println("There has been an "

+ " error in the data that "

+ " you supplied");

else if (tooMany)

System.out.println("You have had too "

+ "many accidents for me to "

+ " insure you.");

else {

System.out.println("The basic rate is $"

+ basicRate);

if (ageSurcharge > 0)

System.out.println("There is an extra "

+ "surcharge of $"
+ ageSurcharge

+ " because the driver is"

+ " under 25.");

if (accidentSurcharge > 0)

System.out.println("There is an extra "

+ " surcharge of $"

+ accidentSurcharge

+ " because the driver had "

+ numAccidents

+ " accident(s).");

rate = basicRate + ageSurcharge

+ accidentSurcharge;

System.out.println("The total charge is $“

+ rate);

}

}

}

Loops

• We need the ability to perform the same set

of instructions repeatedly so we don’t have

to write them over and over again.

• This is why Java includes several ways of

using repetition in a program.

• Each case where we repeat a set of

statement is called a loop.

Counting Loops

• The first type of loop is a counting loop.

• Counting loops are repeated a specific

number of times.

• If you read the loop, you can easily figure

out how many times its statements will be

performed.

Example: Hello Again

• Example - Write a program that greets the user
with "Hello, again!" five times.

• We could write the program like this:
import java.util.Scanner;

public class HelloAgain {

// Hello again - this program writes "Hello,

// again" five times

public static void main(String[] args) {

System.out.println("Hello, again");

System.out.println("Hello, again");

System.out.println("Hello, again");

System.out.println("Hello, again");

System.out.println("Hello, again");

}

}

Counting Loops

• We use a for loop to write counting loops

• In Java, it looks like this:
for (count = start; count <= finish; count++)

statement;

• or
for (count = start; count <= finish; count++) {

statements

}

Counting Loops (continued)

for (count = start; count <= finish; count++)

statement

variable used to count

times through the loop

initial value

of the counter

final value of

the counter

The New HelloAgain

public class HelloAgain2 {

// HelloAgain2 - this is a better way to write

// "Hello, again" five times

public static void main(String[] args) {

int i;

for (i = 1; i <= 5; i++)

System.out.println("Hello, again");

}

}

Generalizing HelloAgain

• This program is also flawed; it gives us no choices

as to how many times we can print “Hi, there!”

• We can to let the user select how many times to

print the message and making this version of the

program more general is fairly easy:

• Our algorithm will start as:

1. Find out how many time to print the message.

2. Print "Hi, there!" that many times.

The Revised HelloAgain

import java.util.Scanner;

public class HelloAgain3 {

// HelloAgain3 - Write "Hello, again" as many times

// as the user wants

public static void main(String[] args) {

Scanner keyb = new Scanner(System.in);

int i, count, totalTimes;

System.out.println("How many times do you want to "

+ "say \"hello\"?");

totalTimes = keyb.nextInt();

for (count = 0; count < totalTimes; count++)

System.out.println("Hello, again");

}

}

Example: Averaging n Numbers

• Let's get back to our original problem. We

want to able to average any number of

values.

• Let's start by outlining our algorithm:

1. Find out how many values there are.

2. Add up all the values.

3. Divide by the number of values

4. Print the result

The AverageN Program

import java.util.Scanner;

public class AverageN {

//AverageN - Find the average of N values

public static void main(String[] args) {

Scanner keyb = new Scanner(System.in);

double sum, average, value;

int numValues, currentValue;

//Find out how many values there are

System.out.println

("How many values are you going to enter?");

numValues = keyb.nextInt();

// Read in each value and add it to the sum

sum = 0.0;

for (currentValue = 1;

currentValue <= numValues;

currentValue++) {

System.out.println("What is the next value?");

value = keyb.nextDouble();

sum = sum + value;

}

// Calculate and print out the average

average = sum / numValues;

System.out.println("The average is " + average);

}

}

Example: Interest Program

• Example - Write a program that calculates the
interest that the Canarsie Indians would have
accumulated if they had put the $24 that they had
received for Manhattan Island in the bank at 5%
interest.

Input - none; all the values are fixed

Output - Year and Principle

Other Information -

Principle is initially 24

Interest = Interest Rate * Principle

New Principle = Old Principle + Interest

The Interest Program

public class Interest {

// Calculate the interest that the Canarsie

// Indians could have accrued if they had

// deposited the $24 in a bank account at

// 5% interest.

public static void main(String[] args) {

final int present = 2005;

int year;

final double rate = 0.05;

double interest, principle;

// Set the initial principle at $24

principle = 24;

// For every year since 1625, add 5% interest

// to the principle and print out

// the principle

for (year = 1625; year < present; year++) {

interest = rate * principle;

principle = principle + interest;

System.out.println("year = " + year

+ "\tprinciple = "

+ principle);

}

}

}

Output from the Compound Interest Program

•What will our output look like?
year = 1625 principle = 25.2

year = 1626 principle = 26.46

year = 1627 principle = 27.783

year = 1628 principle = 29.172150000000002

… … … … …

year = 2001 principle = 2.3365602874289446E9

year = 2002 principle = 2.4533883018003917E9

year = 2003 principle = 2.5760577168904114E9

year = 2004 principle = 2.704860602734932E9

•This does not look the way we expect monetary

amounts to be written!

System.out.printf()

• The method System.out.printf() gives us a

way to write output that is formatted, i.e., we can

control its appearance.

• We write the method:

System.out.printf(ControlString,

Arg1, Arg2, ...)

• The control string is a template for our output,

complete with the text that will appear along with

whatever values we are printing.

System.out.printf(): Some Simple

Examples

• System.out.printf() will print whatever is in

the control string with a few exceptions:
System.out.printf("This is a test");

System.out.printf("This is a test").

will produce:

This is a testThis is a test

If you want these to be on two separate lines:
System.out.printf("This is a test\n");

System.out.printf("This is a test\n").

Special Characters

• There are a number of special characters

that all begin with a backslash:

– \n new line

– \b backspace

– \t tab

• These can appear anywhere with a string of

characters:
System.out.printf("This is a test\nIt is!!\n");

%d and %f

• The specifiers %d and %f allow a programmer to

specify how many spaces a number will occupy

and (in the case of float values) how many

decimal places will be used.

• %nd will use at least n spaces to display the

integer value in decimal (base 10) format.

• %w.df will use at least w spaces to display the

value and will have exactly d decimal places.

Changing the width

```-182%7d-182

`-182%5d-182

-182%4d-182

````182%7d182

``182%5d182

182%3d182

182%2d182

Print as:FormattingNumber

Changing the width (continued)

…..11023%10d-11023

-11023%6d-11023

.11023%6d11023

11023%4d11023

……23%8d23

….23%6d23

23%2d23

23%1d23

Print as:FormattingNumber

Changing The Precision

Number Formatting Prints as:

2.718281828 %8.5f `2.71828

2.718281828 %8.3f ```2.718

2.718281828 %8.2f ````2.72

2.718281828 %8.0f ````````3

2.718281828 %13.11f 2.71828182800

2.718281828 %13.12f 2.718281828000

The revised Compound program

public class Interest2 {

// Calculate the interest that the Canarsie

// Indians could have accrued if they had

// deposited the $24 in an bank account at

// 5% interest.

public static void main(String[] args) {

final int present = 2005;

int year;

final double rate = 0.05;

double interest, principle;

// Set the initial principle at $24

principle = 24;

// For every year since 1625, add 5% interest

// to the principle and print out

// the principle

for (year = 1625; year < present; year++) {

interest = rate * principle;

principle = principle + interest;

System.out.printf

("year = %4d\tprinciple = $%13.2f\n",

year, principle);

}

}

The output from the Revised Compound

Program

Our output now looks like this:
year = 1625 principle = $ 25.20

year = 1626 principle = $ 26.46

year = 1627 principle = $ 27.78

year = 1628 principle = $ 29.17

… … … … … … … … … … … … … … …

year = 2001 principle = $2336560287.43

year = 2002 principle = $2453388301.80

year = 2003 principle = $2576057716.89

year = 2004 principle = $2704860602.73

Integer Division

• Our compound interest program prints the

values for every year where every ten or

twenty years would be good enough.

• What we really want to print the results

only if the year is ends in a 5. (The

remainder from division by 10 is 5).

Integer Division (continued)

• Division of an integer by an integer

produces an integer quotient:

5/3 = 1R2 16/3 = 5R1

6/2 = 3R0 15/4 = 3R3

quotient
remainder

Integer Division (continued)

• In Java, the / operator produces n integer

quotient for integer division.

• If you want the remainder from integer

division, you want to use the % operator

public class DivTest {

public static void main(String[] args) {

// A few examples of integer division using

// / and %

System.out.println("8 / 3 = " + 8 / 3);

System.out.println("8 % 3 = " + 8 % 3);

System.out.println("2 / 3 = " + 2 / 3);

System.out.println("2 % 3 = " + 2 % 3);

System.out.println("49 / 3 = " + 49 / 3);

System.out.println("49 % 3 = " + 49 % 3);

System.out.println("49 / 7 = " + 49 / 7);

System.out.println("49 % 7 = " + 49 % 7);

System.out.println("-8 / 3 = " + -8 / 3);

System.out.println("-8 % 3 = " + -8 % 3);

System.out.println("-2 / 3 = " + -2 / 3);

System.out.println("-2 % 3 = " + -2 % 3);

System.out.println("-2 / -3 = " + -2 / -3);

System.out.println("-2 % -3 = " + -2 % -3);

System.out.println("2 / -3 = " + 2 / -3);

System.out.println("2 % -3 = " + 2 % -3);

System.out.println("-49 / 3 = " + -49 / 3);

System.out.println("-49 % 3 = " + -49 % 3);

System.out.println("-49 / -3 = " + -49 / -3);

System.out.println("-49 % -3 = " + -49 % -3);

System.out.println("49 / -3 = " + 49 / -3);

System.out.println("49 % -3 = " + 49 % -3);

System.out.println("-49 / 7 = " + -49 / 7);

System.out.println("-49 % 7 = " + -49 % 7);

System.out.println("-49 / -7 = " + -49 / -7);

System.out.println("-49 % -7 = " + -49 % -7);

System.out.println("49 / -7 = " + 49 / -7);

System.out.println("49 % -7 = " + 49 % -7);

}

}

Integer Division Results

-49 % 3 = -1-49 / 3 = -16

2 %-3 = 22 / -3 = 0

-2 % -3 = -2-2 / -3 = 0

-2 % 3 = -2-2 / 3 = 0

-8 % 3 = -2-8 / 3 = -2

49 % 7 = 049 / 7 = 7

49 % 3 = 149 / 3 = 16

2 % 3 = 22 / 3 = 0

8 % 3 = 28 / 3 = 2

Integer Division Results (continued)

-49 % 7 = 0-49 / 7 = -7

49 % -3 = 149 / -3 = -16

-49 % -3 = -1-49 / -3 = 16

Final Compound Interest Program

public class Interest3 {

// Calculate the interest that the Canarsie

// Indians could have accrued if they had

// deposited the $24 in an bank account at

// 5% interest.

public static void main(String[] args) {

final int present = 2005;

int year;

final double rate = 0.05;

double interest, principle;

// Set the initial principle at $24

principle = 24;

// For every year since 1625, add 5% interest

// to the principle and print out

// the principle

for (year = 1625; year < present; year++) {

interest = rate * principle;

principle = principle + interest;

// Print the principle for every 20th year

if (year % 20 == 5)

System.out.printf

("year = %4d\tprinciple = $%13.2f\n",

year, principle);

}

// Print te values for the last year

System.out.printf

("year = %4d\tprinciple = $%13.2f\n",

year, principle);

}

}

A program to calculate Grade Point Average

Example – Professor Smith gives n tests during the term and

uses a grading system, where each test is 1/n of the course

grade. Assuming that that the average of the test grades

translate into a letter grade as follows:
Test Average Letter Grade

90.0+ A

80-89.9 B

70-79.9 C

60-69.9 D

below 60.0 F

write a program that will calculate a student's grade.

A Program To Calculate Test Average

Input - Number of tests and the student's test grades

Output – Test average and course grade
Other information

A 90+ average is an “A”.

A 80-90 average is a “B”.

A 70-80 average is a “C”.

A 60-70 average is a “D”

An average below 60 is an “F”.

Test average = Sum of the test grade/ Number of tests

Our first step is to write out our initial algorithm:

1. Find the number of tests

2. Find the average of n tests

3. Find the corresponding letter grade and print it out.

Our program

public static void main(String[] args) {

Scanner keyb = new Scanner(System.in);

int thisTest, numTests, total, thisGrade;

float testAverage;

char courseGrade;

// Find out the number of classes

System.out.println

("How many tests did you take ?");

numTests = keyb.nextInt();

for (thisTest = 0; thisTest < numTests;

thisTest++) {

System.out.println

("What grade did you get on this test ?");

thisGrade = keyb.nextInt();

// Make sure that the grades are valid

// percentages

total = total + thisGrade;

}

// Find the average

testAverage = total/numTests;

// Find the letter grade corresponding to the

// average

if (testAverage >= 90)

courseGrade = 'A';

else if (testAverage >= 80)

courseGrade = 'B';

else if (testAverage >= 70)

courseGrade = 'C';

else if (testAverage >= 60)

courseGrade = 'D';

else

courseGrade = 'F';

// Print the results.

System.out.println

("Your test average is " + testAverage);

System.out.println

("Your grade will be " + courseGrade);

}

}

