
Computer Organization and
Assembly Language

Lecture 3 – Assembly Language
Fundamentals

Basic Elements of Assembly Language

An assembly language program is composed of :
• Constants
• Expressions
• Literals
• Reserved Words
• Mnemonics
• Identifiers
• Directives
• Instructions
• Comments

Integer Constants

• Integer constants can be written in decimal,
hexadecimal, octal or binary, by adding a radix (or
number base) suffix to the end .

• Radix Suffices:
– d decimal (the default)
– h hexadecimal
– q or o octal
– b binary

Examples of Integer Constants

• 26 Decimal
• 1Ah Hexadecimal
• 1101b Binary
• 36q Octal
• 2Bh Hexadecimal
• 42Q Octal
• 36D Decimal
• 47d Decimal

Integer Expressions

• An integer expressions is a mathematical
expressions involving integer values and integer
operators.

• The expressions must be one that can be stored in
32 bits (or less).

• The precedence:
– () Expressions in Parentheses
– +, - Unary Plus and minus
– *, /, Mod Multiply, Divide, Modulus
– +, - Add, Subtract

Examples of Integer Expressions

(4 + 2) * 6

12 – 1 MOD 5

-5 + 2
14 + 5 * 2

20-3 + 4 * 6 – 1
-35- (3 + 4) * (6 – 1)

316 / 5
ValueExpression

Real Number Constants

• There are two types of real number constants:
– Decimal reals, which contain a sign followed

by a number with decimal fraction and an
exponent:
[sign] integer.[integer][exponent]
Examples:
2. +3.0 -44.2E+05 26.E5

– Encoded reals, which are represented exactly
as they are stored:
3F80000r

Characters Constants

• A character constant is a single character
enclosed in single or double quotation
marks.

• The assembler converts it to the equivalent
value in the binary code ASCII:
‘A’
“d”

String Constants

• A string constant is a string of characters
enclosed in single or double quotation
marks:
‘ABC’
“x”
“Goodnight, Gracie”
‘4096’
“This isn’t a test”
‘Say “Goodnight, ” Gracie’

Reserved Words

• Reserved words have a special meaning to the
assembler and cannot be used for anything other
than their specified purpose.

• They include:
– Instruction mnemonics
– Directives
– Operators in constant expressions
– Predefined symbols such as @data which return

constant values at assembly time.

Identifiers

• Identifiers are names that the programmer
chooses to represent variables, constants,
procedures or labels.

• Identifiers:
– can have 1 to 247 characters
– are not case-sensitive
– begin with a letter , underscore, @ or $ and can

also contain digits after the first character.
– cannot be reserved words

Examples of Identifiers

var1 open_file
_main _12345
@@myfile $first
Count MAX
xVal

Directives

• Directives are commands for the assembler,
telling it how to assemble the program.

• Directives have a syntax similar to assembly
language but do not correspond to Intel processor
instructions.

• Directives are also case-insensitive:
• Examples

.data

.code
name PROC

Instructions

• An instruction in Assembly language consists of a
name (or label), an instruction mnemonic,
operands and a comment

• The general form is:
[name] [mnemonic] [operands] [; comment]

• Statements are free-form; i.e, they can be written
in any column with any number of spaces between
in each operand as long as they are on one line and
do not pass column 128.

Labels

• Labels are identifiers that serve as place markers
within the program for either code or data.

• These are replaces in the machine-language
version of the program with numeric addresses.

• We use them because they are more readable:
mov ax, [9020]
vs.
mov ax, MyVariable

Code Labels

• Code labels mark a particular point within
the program’s code.

• Code labels appear at the beginning and are
immediately followed by a colon:

target:
mov ax, bx
… …
jmp target

Data Labels

• Labels that appear in the operand field of an
instruction:
mov first, ax

• Data labels must first be declared in the data
section of the program:
first BYTE 10

Instruction Mnemonics

• Instruction mnemonics are abbreviations
that identify the operation carried out by the
instruction:
mov - move a value to another location
add - add two values
sub - subtract a value from another
jmp - jump to a new location in the program
mul - multiply two values
call - call a procedure

Operands

• Operands in an assembly language
instruction can be:
– constants 96

– constant expressions 2 + 4

– registers eax

– memory locations count

Operands and Instructions

• All instructions have a predetermined number of
operands.

• Some instructions use no operands:
stc ; set the Carry Flag

• Some instructions use one operand:
inc ax ; add 1 to AX

• Some instructions use two operands:
mov count, bx ; add BX to count

Comments

• Comments serve as a way for programmers to
document their programs,

• Comments can be specified:
– on a single line, beginning with a semicolon until the

end of the line:
stc ; set the Carry Flag

– in a block beginning with the directive COMMENT
and a user-specified symbol wchih also ends the
comment:
COMMENT !
… …
!

Example: Adding Three Numbers

TITLE Add And Subtract (AddSub.asm)
; This program adds and subtracts 32-bit

integers.
INCLUDE Irvine32.inc
.code
main PROC

mov eax, 10000h ;Copies 10000h into EAX
add eax, 40000h ;Adds 40000h to EAX
sub eax, 20000h ; Subtracts 20000h from EAX
call DumpRegs ; Call the procedure DumpRegs
exit ; Call Windows procedure Exit

; to halt the program
main ENDP ; marks the end of main

end main ; last line to be assembled

marks the
program’s title
Treated like a
commentCopies the file’s

contents into the
program

Program output

 EAX=00030000 EBX=00530000 ECX=0063FF68 EDX=BFFC94C0
 ESI=817715DC EDI=00000000 EBP=0063FF78 ESP=0063FE3C
 EIP=00401024 EFL=00000206 CF=0 SF=0 ZF=0 OF=0

An Alternative AddSub
TITLE Add And Subtract (AddSubAlt.asm)
; This program adds and subtracts 32-bit

integers.

.386 ; Minimum CPU to run this is an Intel 386

.MODEL flat, stdcall ; Protected mode program
 ; using call Windows calls
.STACK 4096 ; The stack is 4096 bytes in size
ExitProcess PROTO, dwExitCode:DWORD
DumpRegs PROTO ; ExitProcess is an MS-Windows

 ; procedure
 ; DumpRegs is a procedure in

 ; Irvine32.inc
 ; dwExitCode is a 32-bit value

.code
main PROC

mov eax, 10000h
add eax, 40000h
sub eax, 20000h
call DumpRegs

 INVOKE ExitProcess, 0 ; INVOKE is a directive
 ; that calls procedures.

 ; Call the ExitProcess
 ; procedure

 ; Pass back a return
 ; code of zero.

main ENDP
end main

A Program Template

TITLE Program Template (Template.asm)
; Program Description:
; Author:
; Creation Date:
; Revisions:
; Date: Modified by:
INCLUDE Irvine32.inc
.data

; (insert variables here)
.code
main PROC

; (insert executable instructions here)
exit

main ENDP
; (insert additional procedures here)

END main

Assembling, Linking and
Running Programs

Source
file

Link
Library

Object
File

Listing
File

Executable
Program

Map
file

Output

DOS
 LoaderLinker

Assem-
bler

Assembling and Linking the Program

• A 32-bit assembly language program can be
assembled and linked in one step by typing:
make32 filename

• A 16-bit assembly language program can be
assembled and linked in one step by typing:
make16 filename

• Example:
make32 addsub

Other Files

• In addition to the .asm file (assembler source
code), .obj file (object code) and .exe file
(executable file), there are other files created by
the assembler and linker:

• .LST (listing) file – contains the source
code and object code of the program
– .MAP file – contains information about the

segments being linked
– .PDB (Program database) file – contains

supplemental information about the program

Intrinsic Data Types

32-bit signed integerSDWORD

32-bit unsigned integer; also Near pointer in
Protected Mode

DWORD

16-bit signed integerSWORD

16-bit unsigned integer; also Near Pointer in
Real Mode

WORD

8-bit signed integerSBYTE

8-bit unsigned integerBYTE

UsageType

Intrinsic Data Types (continued)

80-bit (10-byte) IEEE extended realREAL10

64-bit (8-byte) IEEE long realREAL8

32-bit (4-byte) IEEE short realREAL4

80-bit (ten-byte) integerTBYTE

64-bit integerQWORD

48-bit integer ; Far Pointer in Protected modeFWORD
UsageType

Defining Data

• A data definition statement allocates storage in
memory for variables.

• We write:
[name] directive initializer [, initializer]

• There must be at least one initializer.
• If there is no specific intial value, we use the

expression ?, which indicate no special value.
• All initializer are converted to binary data by the

assembler.

Defining 8-bit Data

• BYTE and SBYTE are used to allcoate storage for
an unsigned or signed 8-bit value:
value1 BYTE ‘A’ ; character constant
value2 BYTE 0 ; smallest unsigned byte
value3 BYTE 255 ; largest unsigned byte
value4 SBYTE -128 ; smallest signed byte
value5 SBYTE +127 ; largest signed byte
value6 BYTE ? ; no initial value
.data
value7 BYTE 10h ; offset is zero
value8 BYTE 20h ; offset is 1

db Directive

• db is the older directive for allocating
storage for 8-bit data.

• It does not distinguish between signed and
unsigned data:
val1 db 255 ; unsigned byte
val2 db -128; signed byte

Multiple Initializers

• If a definition has multiple initializers, the
label is the offset for the first data item:
.data
list BYTE 10, 20, 30, 40

10Value:

Offset 0000 0001 0002 0003

20 30 40

Multiple Initializers (continued)

• Not all definitions need labels:
.data
list BYTE 10, 20, 30, 40

BYTE 50, 60, 70, 80
BYTE 81, 82, 83, 84

10Value:

Offset 0000 0001 0002 0003

20 30 40 50 60

0004 0005

Multiple Initializers (continued)

• The different initializers can use different radixes:
.data
list1 BYTE 10, 32, 41h, 00100010b
list2 BYTE 0aH, 20H, ‘A’, 22h

• list1 and list2 will have the identical contents, albeit
at different offsets.

Defining Strings

• To create a string data definition, enclose a
sequence of characters in quotation marks.

• The most common way to end a string is a
null byte (0):
greeting1 BYTE “Good afternoon”, 0

is the same as
greeting1 BYTE ‘G’, ‘o’, ‘o’, … 0

Defining Strings (continued)

• Strings can be spread over several lines:
greeting2 BYTE “Welcome to the Encryption”

BYTE “ Demo program”
BYTE “created by Kip Irvine”,\

0dh, 0aH
BYTE “ If you wish to modify this”

“ program, please”
BYTE “send me a copy”, 0dh, 0ah

Concatenates two lines

Using dup

• DUP repeats a storage allocation however
many times is specified:
BYTE 20 DUP(0) ; 20 bytes of zero
BYTE 20 DUP(?) ; 20 bytes uninitialized
BYTE 2 DUP(“STACK”)

; 20 bytes “STACKSTACK”

Defining 16-bit Data

• The WORD and SWORD directives allocate storage of
one or more 16-bit integers:
word1 WORD 65535 ; largest unsigned value
word2 SWORD -32768; smallest signed value
word3 WORD ? ; uninitialized value

• The dw directive can be used to allocated
storage for either signed or unsigned
integers:
val1 dw 65535 ; unsigned
val2 dw -32768 ; signed

Arrays of Words

• You can create an array of word values by
listing them or using the DUP operator:
myList WORD 1, 2, 3, 4, 5

array WORD 5 DUP(?)
; 5 values, uninitialized

1Value:

Offset 0000 0002 0004 0006

2 3 4 5

0008

Defining 32-bit Data

• The DWORD and SDWORD directives allocate storage of
one or more 32-bit integers:
val1 DWORD 12345678h ; unsigned
val2 SDWORD -21474836648; signed
val3 DWORD 20 DUP(?)

; unsigned array

• The dd directive can be used to allocated
storage for either signed or unsigned integers:
val1 dd 12345678h ; unsigned
val2 dw -21474836648 ; signed

Arrays of Doublewords

• You can create an array of word values by
listing them or using the DUP operator:
myList DWORD 1, 2, 3, 4, 5

1Value:

Offset 0000 0004 0008 000C

2 3 4 5

0010

Defining 64-bit Data

• The QWORD directive allocate storage of one or more
64-bit (8-byte) values:
quad1 QWORD 1234567812345678h

• The dq directive can be used to allocated
storage:
quad1 dq 1234567812345678h

Defining 80-bit Data

• The TBYTE directive allocate storage of one or more
80-bit integers, used mainly for binary-coded
decimal numbers:
val1 TBYTE 1000000000123456789h

• The dq directive can be used to allocated
storage:
val1 dt 1000000000123456789h

Defining Real Number Data

• There are three different ways to define real
values:
– REAL4 defines a 4-byte single-precision real

value.
– REAL8 defines a 8-byte double-precision real

value.
– REAL10 defines a 10-byte extended double-

precision real value.
• Each requires one or more real constant

initializers.

Examples of Real Data Definitions

rVal1 REAL4 -2.1
rVal2 REAL8 3.2E-260
rVal3 REAL10 4.6E+4096
ShortArray REAL4 20 DUP(?)

rVal1 DD -1.2
rVal2 dq 3.2E-260
rVal3 dt 4.6E+4096

Ranges For Real Numbers

3.37×10-4932 to
1.18×104932

19Extended Real

2.23×10-308 to 1.79×1030815Long Real

1.18×10-38 to 3.40×10386Short Real

Approximate RangeSignificant
Digits

Data Type

Little Endian Order

• Consider the number 12345678h:

78

56

34

12

0001:

0000:

0002:

0003:

Little-
endian

12

34

56

78

0001:

0000:

0002:

0003:

Big-
endian

Adding Variables to AddSub

TITLE Add And Subtract (AddSub2.asm)
; This program adds and subtracts 32-bit
integers.

; and stores the sum in a variable
INCLUDE Irvine32.inc
.data
val1 DWORD10000h
val2 DWORD40000h
val3 DWORD20000h
finalVal DWORD?

.code
main PROC
mov eax, val1 ; Start with 10000h
add eax, val2 ; Add 40000h
sub eax, val3 ; Subtract 2000h
mov finalVal, eax ; Save it
call DumpRegs ; Display the

; registers
exit

main ENDP
end main

Symbolic Constants

• Equate directives allows constants and
literals to be given symbolic names.

• The directives are:
– Equal-Sign Directive
– EQU Directive
– TEXTEQU Directive

Equal-Sign Directive

• The equal-sign directive creates a symbol by
assigning a numeric expression to a name.

• The syntax is:
name = expression

• The equal sign directive assigns no storage; it just
ensures that occurrences of the name are replaces
by the expression.

Equal-Sign Directive (continued)

• Expression must be expressable as 32-bit integers (this requires a .386 or
higher directive).

• Examples:
prod = 10 * 5 ; Evaluates an expression
maxInt = 7FFFh ; Maximum 16-bit signed value
minInt = 8000h ; Minimum 16-bit signed value
maxUInt = 0FFFh ; Maximum 16-bit unsigned value
String = ‘XY ’ ; Up to two characters allowed
Count = 500
endvalue = count + 1 ;Can use a predefined symbol

.386
maxLong = 7FFFFFFFh

; Maximum 32-bit signed value
minLong = 80000000h; Minimum 32-bit signed value

maxULong = 0fffffffh; Maximum 32-bit unsigned value

Equal-Sign Directive (continued)

• A symbol defined with an equal-sign directive can be
redefined with a different value later within the same
program:
– Statement: Assembled as:

count = 5
mov al, count mov al, 5
mov dl, al mov al, dl
count = 10
mov cx, count mov cx, 10
mov dx, count mov dx, 10
count = 2000
mov ax, count mov ax, 2000

EQU Directive
• The EQU Directive assigns a symbolic name to a string or

numeric constant
• Symbols defined using EQU cannot be redefined.
• Expressions are evaluated as integer values, but floating

point values are evaluated as strings.
• Strings may be enclosed in the brackets < > to ensure their

correct interpretation.
• Examples:

Example Type of value
maxint equ 32767 Numeric
maxuint equ 0FFFFh Numeric
count equ 10 * 20 Numeric
float1 equ <2.345> String

TEXTEQU Directive
• The TEXTEQU directive assigns a name to a sequence of

characters.
• Syntax:

name TEXTEQU <text>
name TEXTEQU textmacro
name TEXTEQU %constExpr

• Textmacro is a predefined text macro (more about this later)
constExpr is a numeric expression which is evaluated and
used as a string.

• Example:
continueMsg textequ <“Do you wish to continue?”>
.data
prompt1 db ContinueMsg

TEXTEQU Examples
;Symbol declarations:
move textequ <mov>
address textequ <offset>
; Original code:
move bx, address value
move al, 20

; Assembled as:
mov bx, offset value
mov al, 20

TEXTEQU Examples (continued)

.data
myString BYTE “A string”, 0
.code
p1 textequ <offset MyString>

mov bx, p1
; bx = offset myString

p1 textequ <0>
mov si, p1 ; si = 0

Real-Address Mode
Programming

TITLE Add And Subtract (AddSub3.asm)
; This program adds and subtracts 32-bit
; integers and stores the sum in a
; variable. Target : Real Mode
INCLUDE Irvine16.inc
.data
val1 DWORD10000h
val2 DWORD40000h
val3 DWORD20000h
finalVal DWORD?

.code
main PROC

mov ax, @data
mov ds, ax ; initialize the data

; segment register
mov eax, val1 ; Start with 10000h
add eax, val2 ; Add 40000h
sub eax, val3 ; Subtract 2000h
mov finalVal, eax ; Save it
call DumpRegs ; Display the

; registers
exit

main ENDP
end main

