Computer Organization and
Assembly Language

L ecture 3 — Assembly Language
Fundamentals

Basic Elements of Assembly Language

An assembly language program is composed of :
Constants
Expressions
Literals
Reserved Words
Mnemonics
|dentifiers
Directives
Instructions
Comments

Integer Constants

* Integer constants can be written in decimal,
hexadecimal, octal or binary, by adding aradix (or
number base) suffix to theend .

* Radix Suffices:
decimal (the default)
hexadecimal
octal

binary

Examples of Integer Constants

26 Decimd

1Ah Hexadecimal
Binary

36q Octdl
Hexadecimal
Octdl
Decimal
Decima

Integer Expressions

An integer expressions is a mathematical
expressions involving integer values and integer
operators.
The expressions must be one that can be stored in
32 bits (or less).
The precedence:

-() Expressions in Parentheses

-+, - Unary Plus and minus

-*,/,Maod Multiply, Divide, Modulus

-+, - Add, Subtract

Examples of Integer Expressions

Expression Value
16 / 5 2
- (3 +4) * (6 - 1) .35
-3+4* 6 -1 20
4 +5* 2 1
-5 + 2

12 - 1 MOD 5

(4 +2) * 6

Real Number Constants

* There aretwo types of real number constants:

— Decimal reals, which contain asign followed
by a number with decimal fraction and an
exponent:

[sign] integer.[integer][exponent]
Examples:
2. +3. 0 -44. 2E+05 26. E5

— Encoded reals, which are represented exactly
asthey are stored:
3F80000r

Characters Constants

» A character constant is a single character
enclosed in single or double quotation
marks.

» The assembler convertsit to the equivalent
value in the binary code ASCI I :
N
“ g

String Constants

A string constant is a string of characters
enclosed in single or double quotation
marks:

“ ABC

“

“Goodni ght, G aci e”

© 4096’

“This isn't a test”

“Say “Goodnight, ” Gacie’

Reserved Words

» Reserved words have a specia meaning to the
assembler and cannot be used for anything other
than their specified purpose.

* They include;

— Instruction mnemonics
— Directives
— Operatorsin constant expressions

— Predefined symbols such as @at a which return
constant values at assembly time.

|dentifiers

* |dentifiersare names that the programmer
chooses to represent variables, constants,
procedures or labels.

e |dentifiers:
— can have 1 to 247 characters
— are not case-sensitive

— begin with aletter , underscore, @or $ and can
also contain digits after the first character.

— cannot be reserved words

Examples of |dentifiers

varl open file
_main 12345
@yfile $first
Count MAX

xVal

Directives

Directives are commands for the assembler,
telling it how to assemble the program.

Directives have a syntax similar to assembly

language but do not correspond to Intel processor
instructions.

Directives are also case-insensitive:
Examples

. dat a

. code

name PROC

| nstructions

Aningtruction in Assembly language consists of a
name (or label), an instruction mnemonic,
operands and a comment

The genera formis:
[name] [mnemonic] [operands] [; comment]

Statements are free-form; i.e, they can be written
in any column with any number of spaces between
in each operand as long as they are on one line and
do not pass column 128.

L abels

» Labelsareidentifiersthat serve as place markers
within the program for either code or data.

» These are replaces in the machine-language
version of the program with numeric addresses.

* We use them because they are more readable;
nov ax, [9020]

VS.
nov ax, MyVari abl e

Code Labdls

» Code labels mark a particular point within
the program’s code.

» Code labels appear at the beginning and are
immediately followed by a colon:

ax, bx

j mp target

Data Labels

 Labelsthat appear in the operand field of an
instruction:
nov first, ax

» Datalabels must first be declared in the data

section of the program:
first BYTE 10

| nstruction M nemonics

e |nstruction mnemonics are abbreviations
that identify the operation carried out by the
Instruction:

mov - move avaue to another location

add - add two values

sub - subtract a value from another

jmp - jump to anew location in the program
mul - multiply two values

cal | - call aprocedure

Operands

» Operandsin an assembly language
instruction can be:
— constants 96
— constant expressions
— registers
— memory locations

Operands and Instructions

All instructions have a predetermined number of
operands.

Some instructions use no operands:
stc ; set the Carry Fl ag

Some instructions use one operand:
i nc ax ; add 1 to AX

Some instructions use two operands:
nmov count, bx ; add BX to count

Comments

» Comments serve as away for programmersto
document their programs,
» Comments can be specified:
— on asingle line, beginning with a semicolon until the
end of theline:
stc ; set the Carry Flag
— inablock beginning with the directive COMMENT
and a user-specified symbol wchih also ends the

comment:
!

Example: Adding Three Numbers

marks the
TITLE Add And Subtract (AddSub.asm < —

: _ program'stitle
; This program adds and subtracts 32-bit Treated lik
i ntegers. reated like a

| NCLUDE I rvine32. inc_ Copiesthefile’s comment
_code) contentsinto the
mai n PROC program
mov eax, 10000h ; Copi es 10000h into EAX
add eax, 40000h ; Adds 40000h to EAX
sub eax, 20000h ; Subtracts 20000h from EAX
cal | DunpRegs ; Call the procedure DunpRegs
exit ; Call Wndows procedure Exit
to halt the program
mai n ENDP ; marks the end of main
end nai n ; last line to be assenbl ed

Program output

EAX=00030000 EBX=00530000 ECX=0063FF68 EDX=BFFC94C0
ESI =817715DC EDI =00000000 EBP=0063FF78 ESP=0063FE3C
El P=00401024 EFL=00000206 CF=0 SF=0 ZF=0 OF=0

An Alternative AddSub

TI TLE Add And Subtract (AddSubAlt.asm

Thi s program adds and subtracts 32-bit
i nt egers.

. 386 ;7 Mnimum CPU to run this is an Intel 386
.MODEL flat, stdcall ; Protected node program
; using call Wndows calls
. STACK 4096 ; The stack is 4096 bytes in size
Exi t Process PROTO, dwkxit Code: DWORD
DunmpRegs PROTO ; ExitProcess is an MsS-W ndows
; procedure

DunpRegs is a procedure in

I rvine32.inc

dwExit Code is a 32-bit value

. code
mai n PROC

nmov eax, 10000h
add eax, 40000h
sub eax, 20000h
cal | DunpRegs

| N\VOKE ExitProcess, 0 ; INVOKE is a directive
that calls procedures.
Call the ExitProcess
procedure
Pass back a return
code of zero

mai n ENDP
end mai n

A Program Template

TITLE Program Tenplate (Tenpl ate.asm
; Program Descri ption:
Aut hor :
; Creation Date:
; Revi sions:
; Date: Modi fi ed by:
| NCLUDE I rvine32.inc
.data
; (insert variables here)
. code
mai n PROC
; (insert executable instructions here)
exit
mai n ENDP
; (insert additional procedures here)
END main

Assembling, Linking and
Running Programs

Link
Library

bler Object Executable

_“ File Program

Listing _,| Map

¥ File file

Assembling and Linking the Program

» A 32-bit assembly language program can be
assembled and linked in one step by typing:
make32 filename

» A 16-bit assembly language program can be
assembled and linked in one step by typing:
makel16 filename

« Example:
make32 addsub

Other Files

* Inaddition to the .asm file (assembler source
code), .obj file (object code) and .exefile
(executablefile), there are other files created by
the assembler and linker:

o .L ST (listing) file — contains the source
code and object code of the program

— .MAP file — contains information about the
segments being linked

— .PDB (Program databasg) file — contains
supplemental information about the program

Intrinsic Data Types

Usage
8-bit unsigned integer
8-bit signed integer

16-bit unsigned integer; a'so Near Pointer in
Real Mode

16-bit signed integer
32-bit unsigned integer; a'so Near pointer in
Protected Mode

it Saned |

Intrinsic Data Types (continued)

Usage
48-bit integer ; Far Pointer in Protected mode

64-bit integer

80-hit (ten-byte) integer

32-bit (4-byte) |EEE short real
64-bit (8-byte) IEEE long real
80-hit (10-byte) IEEE extended real

Defining Data

A data definition statement allocates storage in
memory for variables.

We write:
[name] directive initializer [, initializer]
There must be at least oneinitiaizer.

If thereis no specific intial value, we use the
expression ?, which indicate no special value.

All initializer are converted to binary data by the
assembler.

Defining 8-bit Data

* BYTE and SBYTE are used to allcoate storage for
an unsigned or signed 8-bit value:
val uel BYTE ‘A ; character constant
val ue2 BYTE O ; smal | est unsigned byte
val ue3 BYTE 255 ; largest unsigned byte
val ued SBYTE -128 ; smmllest signed byte
val ueb SBYTE +127 ; largest signed byte
val ue6 BYTE ? ; no initial value
. data
val ue7 BYTE 10h ; offset is zero
val ue8 BYTE 20h ; offset is 1

db Directive

 db isthe older directive for allocating
storage for 8-hit data.

* |t does not distinguish between signed and
unsigned data:
vall db 255 ; unsigned byte
val2 db -128; signed byte

Multiple Initializers

* If adefinition has multiple initializers, the
label isthe offset for the first dataitem:
. data
i st BYTE 10, 20, 30, 40

Offset 0000 0001 0002 0003

Value | 10 20 30 40

Multiple Initializers (continued)

* Not all definitions need labels:
. dat a
li st BYTE 10, 20, 30, 40
BYTE 50, 60, 70, 80
BYTE 81, 82, 83, 84

Offset 0000 0001 0002 0003 0004

Value: 10 20 30 40 50

Multiple Initializers (continued)

» Thedifferent initializers can use different radixes:
. dat a
listl BYTE 10, 32, 41h, 00100010b
list2 BYTE OaH, 20H, ‘A, 22h

* |istl and list2 will have the identical contents, albeit
at different offsets.

Defining Strings

» To create a string data definition, enclose a
sequence of characters in quotation marks.
* The most common way to end astringisa
null byte (0):
greetingl BYTE “Good afternoon”, O

Isthe same as
greetingl BYTE ‘G, ‘o,

Defining Strings (continued)

 Strings can be spread over several lines:
greeting2 BYTE “Wel cone to the Encryption”
BYTE “ Deno progrant

BYTE “created by Kip Irvine”,\
0dh, OaH

If you wsh to nodify this”
program pl ease”
“send ne a copy”, 0dh, Oah

Concatenates two lines

Using dup

 DUP repeats a storage allocation however
many times is specified:
BYTE 20 DUP(0) ; 20 bytes of zero
BYTE 20 DUP(?) ; 20 bytes uninitialized

BYTE 2 DUP(* STACK")
; 20 bytes “STACKSTACK”

Defining 16-bit Data

* The WoRD and SWORD directives allocate storage of

one or more 16-bit integers:

wor dl WORD 65535 ; |argest unsigned val ue
wor d2 SWORD -32768; small est signed val ue
wor d3 WORD ? ; uninitialized val ue

* The dwdirective can be used to allocated
storage for either signed or unsigned
integers:

val 1 dw 65535 ; unsigned
val 2 dw - 32768 ; signed

Arrays of Words

* You can create an array of word values by
listing them or using the DUP operator:

myLi st WORD 1, 2, 3, 4, 5

Offset 0000 0002 0004 0006

Value: 1 2 3 4

array WORD 5 DUP(?)
; 5 values, uninitialized

Defining 32-bit Data

» The pWoRD and SDWORD directives allocate storage of
one or more 32-hit integers:
val 1 DWORD 12345678 ; unsigned
val 2 SDWORD -21474836648; signed
val 3 DWORD 20 DUP(?)
; unsigned array

» The dd directive can be used to allocated

storage for either signed or unsigned integers.
val 1 dd 12345678h ; unsigned
val 2 dw -21474836648 ; signed

Arrays of Doublewords

* You can create an array of word values by
listing them or using the DUP operator:

nyLi st DWORD 1, 2, 3, 4, 5

Offset 0000 0004 0008 00OC 0010

Vaue: 1 2 3 4 5

Defining 64-bit Data

» The QWORD directive allocate storage of one or more
64-bit (8-byte) values:
quadl QNORD 1234567812345678h

» The dq directive can be used to allocated

storage:
quadl dq 1234567812345678h

Defining 80-bit Data

» The TBYTE directive alocate storage of one or more
80-bit integers, used mainly for binary-coded
decimal numbers:

val 1 TBYTE 1000000000123456789h

* The dq directive can be used to allocated

storage;
val 1 dt 1000000000123456789h

Defining Real Number Data

» There arethree different waysto definereal
values:
— REALA4 defines a4-byte single-precision real
value.
— REAL8 defines a 8-byte double-precision real
vaue.

— REAL 10 defines a 10-byte extended double-
precision rea value.

 Each requires one or more real constant
initializers.

Examples of Real Data Definitions

rval 1 REAL4 -2.1

r Val 2 REALS8 3. 2E- 260

rval 3 REAL10 4. 6E+4096
Short Array REAL4 20 DUP(?)

rval 1 DD -1.2
rVal 2 dg 3.2E-260
rVal 3 dt 4. 6E+4096

Ranges For Real Numbers

Data Type

Significant

Digits

Approximate Range

Short Red

6

1.18" 10310 3.40° 10®

Long Redl

15

2.23° 103%t0 1.79" 10°%8

Extended Redl

19

3.37" 104210
1.18" 104932

Little Endian Order

» Consider the number 12345678h:

Adding Variablesto AddSub

TI TLE Add And Subtract (AddSub2. asm
Thi s program adds and subtracts 32-bit
i nt egers.

; and stores the sumin a variable

| NCLUDE I rvine32.inc

.data

val 1 DWORD10000h

val 2 DWORD40000h

val 3 DWORD20000h

final Val DWRD?

. code
mai n PROC
nov eax, vall ; Start with 10000h
add eax, val 2 ; Add 40000h
sub eax, val 3 ; Subtract 2000h
nov final Val, eax ; Save it
call DunpRegs ; Display the
; registers
exit
mai n ENDP
end

Symbolic Constants

» Equate directives allows constants and
literals to be given symbolic names.
e Thedirectives are:
— Equal-Sign Directive
—EQU Directive
—TEXTEQU Directive

Equal-Sign Directive

* The equal-sign directive creates a symbol by
assigning a numeric expression to a name.
* Thesyntax is:
name = expression
» Theequal sign directive assigns no storage; it just
ensures that occurrences of the name are replaces
by the expression.

Equal-Sign Directive (continued)

» Expression must be expressable as 32-hit integers (this requires a .386 or
higher directive).

* Examples:
prod = 10 * 5 ; Eval uates an expression
maxlnt = 7FFFh ; Maxi mum 16-bit signed val ue
m nlnt = 8000h ; M nimm 16-bit signed val ue
maxUl nt = OFFFh ; Maxi mum 16-bit unsigned val ue
String = XY’ ; Up to two characters all owed
Count = 500
endval ue = count + 1 ; Can use a predefined synbol

. 386
maxLong 7FFFFFFFh
; Maxi mum 32-bit signed val ue
m nLong 80000000h; M ni mum 32-bit signed val ue

maxULong = Offfffffh; Maxi mum 32-bit unsigned val ue

Equal-Sign Directive (continued)

» A symbol defined with an equal-sign directive can be
redefined with a different value later within the same
program:

— Statement: Assembled as:
count =5
nov al, count al, 5
nov dl, al al, d
count = 10
mov cx, count cx, 10
nov dx, count dx, 10
count = 2000
nov ax, count ax,

EQU Directive

The EQU Directive assigns a symbolic nameto a string or
numeric constant

Symbols defined using EQU cannot be redefined.

Expressions are evaluated as integer values, but floating
point values are evaluated as strings.

Strings may be enclosed in the brackets < > to ensure their
correct interpretation.

Examples:

Exanmpl e Type of val ue

maxi nt equ 32767 Nuneri c

maxui nt equ OFFFFh Numeri c

count equ 10 * 20 Nurmeri c

floatl equ <2. 345> String

TEXTEQU Directive

The TEXTEQU directive assigns a name to a sequence of
characters.

Syntax:

nanme TEXTEQU <t ext >
name TEXTEQU textmacro
name TEXTEQU %const Expr

Textmacro is a predefined text macro (more about this later)
constExpr is anumeric expression which is evaluated and
used as a string.
Example:

conti nueMsg textequ <“Do you wi sh to continue?”>
.data
pronpt 1 db Cont i nueMsg

TEXTEQU Examples
; Synmbol decl arati ons:
nove textequ <nmov>
addr ess textequ <of f set >
Origi nal code:
nove bx, address val ue
nove al, 20

Assenbl ed as:
nmov bx, offset val ue
mov al, 20

TEXTEQU Examples (continued)

. dat a
nmyString BYTE “A string”, O
. code
pl t ext equ <of fset MyString>

nov bx, pl

; bx = offset nyString

pl t ext equ <0>

mov si, pl

Real-Address Mode

Programming

TI TLE Add And Subtract (AddSub3. asm

; This program adds and subtracts 32-bit
; integers and stores the sumin a

; variable. Target : Real Modde

| NCLUDE Irvinel6.inc

. dat a

val 1 DWORD10000h

val 2 DWORD40000h

val 3 DWORD20000h

final Val DWRD?

ds, ax ; initialize the data
; segment register
eax, vall ; Start with 10000h
eax, val 2 ; Add 40000h
sub eax, val3 ; Subtract 2000h
nmov final Val, eax ; Save it
cal l DunmpRegs ; Display the
; registers
exit
mai n ENDP
end

