
1

Introduction to Algorithms and
Data Structures

Lecture 8 – File I/O

Streams

• A stream is an object that allows for the flow
of data between a program and some I/O
device (or a file).
– If the flow is into a program it’s an input stream.
– If the flow is out of a program, it’s an output

stream.

• System.in and System.out are examples of
input and output streams respectively.

2

Text and Binary Files

• Text files are sequences of characters that can be
viewed in a text editor or read by a program.

• Files whose contents are binary images of
information stored in main memory are called binary
files. These include the computer’s representation of:
- numbers - pictures
- sound bites - machine instructions

• The advantage of text files is that they are human-
readable and can be moved easily from computer
system to computer system.

Writing To A Text File

• The preferred class for writing to text files is
PrintWriter, whose methods include println and
print.

• A PrintWriter object can be created by writing:
outputStream = new PrintWrite

(new FileOutputStream("stuff.txt"));
• A FileOutputStream is needed when calling the

constructor. It, in turn, needs the name of the file to
which output is going to be written.

• Since opening a file might lead to a
FileNotFoundException, it should be done in a try
block.

3

Every File Has 2 Names

• Every file has 2 names: the name by which it is
known the operating system of its computer
and the name of the stream connect to the file
(by which the program knows it).

PrintWriter Methods

• There are three constructors:
– PrintWriter objectStream = new
PrintWriter(OutputStream streamObject);

is the standard constructor
– PrintWriter objectStream = new
PrintWriter(new FileOutputStream
(FileName));

allows us to construct a file to which it will write.
– PrintWriter(new
FileOutputStream(FileName, true));

which we will use for appending to a file.

4

PrintWriter Methods (continued)

• public void println(argument)
– Prints the argument which can be a string, integer, floating-

point number, or any object for whch a toString() method
exists.

• public void print(argument)
– Works like println with the newline at the end.

• public PrintWriter void printf()
– Formatted output

• close() – closes the stream
• flush() – flushes the stream, forcing any other data

to be written that has been buffered but not yet
written.

TextFileOutputDemo.java

import java.io.PrintWriter;
import java.io.FileOutputStream;
import java.io.FileNotFoundException;

public class TextFileOutputDemo {
public static void main(String[] args) {

PrintWriter outputStream = null;
try {

outputStream = new PrintWriter
(new FileOutputStream("stuff.txt"));

}
catch (FileNotFoundException e) {

System.out.println
("\"Error opening the file stuff.txt\".");

System.exit(0);
}

5

System.out.println("Writing to file.");
outputStream.println("The quick brown fox ");
outputStream.println

("jumped over the lazy dogs.");

outputStream.close();
System.out.println("End of program.");

}
}

Reading a Text File using Scanner

• The same Scanner class that we have been using to
read input from the keyboard can be used to read
from a text file.

• Although the Scanner has to be declared outside the
try block, the constructor should be called inside it.

• Example
Scanner inputStream = null;
try {

inputStream = new Scanner
(new FileInputStream(“stuff.txt”));

}
catch(FileNotFoundException e) { …

6

Testing for the End of Line

• If you write
Scanner keyb = new Scanner(System.in);
int x = keyb.nextInt()

• and there is no more text, (or a non-integer),
nextInt() will throw a NoSuchElementException

• You can work around this by using
hasNextInt()(which return false if there isn’t a
proper integer there or hasNextLine(), which will
return false if there is no next line.

Some Scanner Constructors

There are two constructors in which we can most
interested:

• public Scanner(InputStream streamObject)

– This can be used to create stream for a file by writing
public Scanner

(new FileInputStream (fileName));

• public Scanner(File fileObject)

– This can be used to create a File object for a file by
writing

– public Scanner(new File(fileName)

7

Some Scanner input Methods

• Scanner has several methods that can be used to
obtain a single data item:
- nextInt() - nextLong()
- nextByte() - nextShort()
- nextDouble() - nextFloat()

• All these methods will return a single value of the
indicated type.

• If there are no more tokens, they will throw a
NoSuchElementException. If the data is not a valid
representation of the type, they will throw an
InputMismatchException, and if the Scanner is
closed, they will throw an IllegalStateException

Some Scanner Input Methods

• Scanner has several methods that can be used to
detect that there is valid data waiting as input:
- hasNextInt() - hasNextLong()
- hasNextByte() - hasNextShort()
- hasNextDouble() - hasNextFloat()

• All these methods will return a true if there is a well-
formed string representation of the type of the data
item ; false otherwise.

• If the Scanner is closed, they will throw an
IllegalStateException

8

Some Other Scanner Methods

• Scanner has two methods that can be used to detect
that there is valid data waiting as input:
- next() - hasNext()
- nextLine() - nextLine()

• next() and nextLine() return the next token and
line respectively.

• hasNext() and hasNextLine() return true if there
is another token or line respectively; otherwise false.

• These methods throw the appropriate exceptions.

TextFileScannerDemo.java
import java.util.Scanner;
import java.io.FileInputStream;
import java.io.FileNotFoundException;

public class TextFileScannerDemo {
public static void main(String[] args) {

System.out.println
("I will read three nunbers and a line");

System.out.println
("of text from the file morestuff.txt");

Scanner inputStream = null;

try {
inputStream = new Scanner

(new FileInputStream("morestuff.txt"));
}

9

catch(FileNotFoundException e) {
System.out.println

("File morestuff.txt was not found.");
System.out.println("or could not be opened.");
System.exit(0);

}
int n1 = inputStream.nextInt();
int n2 = inputStream.nextInt();
int n3 = inputStream.nextInt();

inputStream.nextLine(); // Go to the next line

String line = inputStream.nextLine();

System.out.println
("The three numbers read from the file are:");

System.out.println(n1 + ", "
+ n2 + ", and " + n3);

System.out.println
("The line read from the file is:");

System.out.println(line);
inputStream.close();

}
}

10

HasNextLineDemo.java

import java.util.Scanner;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.PrintWriter;
import java.io.FileOutputStream;

public class HasNextLineDemo {
public static void main(String[] args) {

Scanner inputStream = null;
PrintWriter outputStream = null;

try {
inputStream = new Scanner(new

FileInputStream("original.txt"));
outputStream = new PrintWriter(new

FileOutputStream("numbered.txt"));
}

catch (FileNotFoundException e) {
System.out.println("Problem opening files.");
System.exit(0);

}
String line = null;
int count = 0;

while (inputStream.hasNextLine()) {
line= inputStream.nextLine();
count++;
outputStream.println(count + " " + line);

}
inputStream.close();
outputStream.close();

}
}

11

HasNextIntDemo.java

import java.util.Scanner;
import java.io.FileInputStream;
import java.io.FileNotFoundException;

public class HasNextIntDemo {
public static void main(String[] args) {

Scanner inputStream = null;

try {
inputStream = new Scanner(new

FileInputStream("data.txt"));
}

catch (FileNotFoundException e) {
System.out.println

("File data.txt was not found");
System.out.println("or could not be opened.");
System.exit(0);

}

int next, sum = 0;
while (inputStream.hasNextInt()) {

next= inputStream.nextInt();
sum += next;

}

inputStream.close();
System.out.println("The sum of the numbers is "

+ sum);
}

}

12

BufferedReader Class

• BufferedReader is the class that was used for
reading text data before Scanner class was
introduced in verion 5.0 of Java.

• A BufferedReader was used to open a file as
shown below:
BufferedReader inputStream
= new BufferedReader

(new FileReader(“stuff.txt”));

Reading Text Using BufferedReader

• BufferedReader has methods that are used for input:
– readLine() – reads a line of input that is returned as text.

If there is no more text, it returns a null reference.
– read() – reads a single character from the input stream

that is returned as an integer.. If there is no more text, it
returns -1

– skip(int n) – skips n characters.
– close() – closes the stream’s connection to the file.

• These methods all throw IOException.

13

TextFileInputDemo.java

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.FileNotFoundException;
import java.io.IOException;

public class TextFileInputDemo {
public static void main(String[] args) {

try {
BufferedReader inputStream

= new BufferedReader
(new FileReader("morestuff2.txt"));

String line = inputStream.readLine();
System.out.println

("The first line read from the file is:");
System.out.println(line);

line= inputStream.readLine();
System.out.println

("The second line read from the file is:");
System.out.println(line);
inputStream.close();

}
catch(FileNotFoundException e) {

System.out.println
("File morestuff2.txt was not found");

System.out.println("or could not be opened.");
}
catch (IOException e) {

System.out.println
("Error reading from morestuff2.txt");

}
}

}

14

TextEOFDemo.java

import java.io.BufferedReader;
import java.io.FileReader;
import java.io.PrintWriter;
import java.io.FileOutputStream;
import java.io.FileNotFoundException;
import java.io.IOException;

public class TextEOFDemo {
public static void main(String[] args) {

try {
BufferedReader inputStream = new

BufferedReader
(new FileReader("original.txt"));

PrintWriter outputStream
= new PrintWriter(new

FileOutputStream("numbered.txt"));

int count= 0;
String line= inputStream.readLine();
while (line != null) {

count++;
outputStream.println(count + " " + line);
line = inputStream.readLine();

}
inputStream.close();
outputStream.close();

}
catch (FileNotFoundException e) {

System.out.println("Problem opening file.");
}
catch (IOException e) {

System.out.println
("Error reading from original.txt");

}
}

}

15

Standard Streams

• All Java programs are assumed to have at least
three open streams: System.in, System.out
and System.err (the last one allows for error
message and output to be redirects separately).

RedirectionDemo.java
import java.io.PrintStream;
import java.io.FileOutputStream;
import java.io.FileNotFoundException;

public class RedirectionDemo {
public static void main(String[] args) {

PrintStream errStream = null;
try {

errStream = new PrintStream(new
FileOutputStream("errormessage.txt"));

}
catch (FileNotFoundException e) {

System.out.println
("Error opening file with FileOutputSteam.");

System.exit(0);
}

16

System.setErr(errStream);

System.err.println("Hello fgom System.err.");
System.err.println("Hello from System.out.");
System.err.println("Hello again from

System.err.");

errStream.close();
}

}

File Class

• The File class is a bit like a wrapper class for file
names.

• It also provides us with some methods that can be
used to check some basic properties of files, such as
whether it exists, does the program have permission
to read or write it.

• Example:
File fileObject = new File(“data.txt”);
if (!fileObject.canRead())

System.out.println
("file data.txt is not readable.");

17

File Class Methods

• exists() – returns true if it exists; false otherwise
• canRead() – returns true if the program can read

data from the file; false otherwise.
• canWrite() - returns true if the program can write

data from the file; false otherwise.
• isFile() – returns true if the file exists and is a

regular file; false otherwise.
• isDirectory() - returns true if the file exists and is

a directory; false otherwise.

File Class Methods (continued)

• length() – returns the number of bytes in the file as a long.If
it doesn’t exist or if it’s a directory, the value returned isn’t
specified.

• delete() – tries to delete the file; returns true if it can, false if
it can’t.

• setReadOnly() – sets the file as read only; returns true if it is
can; false if it can’t.

• createNewFile() – creates an empty of that name; returns
true if it can; false if it can’t

• isFile() – returns true if the file exists and is a regular file;
false otherwise.

• isDirectory() - returns true if the file exists and is a
directory; false otherwise.

18

File Class Methods (continued)

• getName() – return the simple name (the last part of the path).
• getPath() – returns the abstract (absolute or relative) path

name or an empty string if the path name is an empty string..
• renameTo(newName) – renames the file to a name represented

by the file object newName; returns true if it is can; false if it
can’t.

• createNewFile() – creates an empty of that name; returns
true if it can; false if it can’t

• mkdir() – makes the directory named by the abstract path
name. Will not create parent directories; returns true if the file
exists and is a regular file; false otherwise.

• mkdirs() - makes the directory named by the abstract path
name. Will necessary but nonexistent create parent
directories; returns true if the file exists and is a regular file;
false otherwise.

FileClassDemo.java

import java.util.Scanner;
import java.io.File;
import java.io.PrintWriter;
import java.io.FileOutputStream;
import java.io.FileNotFoundException;

public class FileClassDemo {
public static void main(String[] args) {

Scanner keyb= new Scanner(System.in);
String line = null;
String fileName = null;

System.out.println
("I will store a line of text for you.");

System.out.println("Enter the line of text:");
line = keyb.nextLine();

19

System.out.println
("Enter a file name to hold the line:");

fileName = keyb.nextLine();
File fileObject = new File(fileName);

while (fileObject.exists()) {
System.out.println

("There already is a file named "
+ fileName);

System.out.println
("Enter a different file name:");

fileName = keyb.nextLine();
fileObject= new File(fileName);

}

PrintWriter outputStream = null;

try {
outputStream

= new PrintWriter(new
FileOutputStream(fileName));

}
catch (FileNotFoundException e) {

System.out.println("Error opening the file.");
System.exit(0);

}

System.out.println("writing \"" + line + "\"");
System.out.println("to the file " + fileName);
outputStream.println(line);

outputStream.close();
System.out.println("Writing completed.");

}
}

20

Binary Files

• Text files save data in the same form as they
appear on the screen or printed page. This
requires the computer to do some conversion
when reading and writing them.

• Binary files save data in their internal form.
– Strings have their unused bytes saved
– Numbers are stored in binary form.

Classes Used in Writing a Binary File

• There are two classes of objects used in
writing binary files:
– FileOutputStream – stream objects that write data

to a file.
– ObjectOutputStream - objects that take data of a

certain type and converting it into a stream of
bytes.

21

The writePrimitive() Methods

• The ObjectOutputStream class has several methods of
writePrimitive(di) that allows the programmer to
write the data item di of type Primitive into the file.

• They all throw IOExceptions
• The methods include:

– oos.writeInt(i)- write integer value i into
the binary file dos.

– oos.writeDouble(x) - write double value x into
the binary file dos.

– oos.writeChar(c) - write char value c into the
binary file dos.

BinaryOutputDemo.java
import java.io.ObjectOutputStream;
import java.io.FileOutputStream;
import java.io.IOException;

public class BinaryOutputDemo {
public static void main(String[] args) {

try {
ObjectOutputStream outputStream

= new ObjectOutputStream(new
FileOutputStream("numbers.dat"));

int i;
for (i = 0; i < 5; i++)

outputStream.writeInt(i);

22

System.out.println("\"Numbers written to the"
+ " file numbers.dat\"");

outputStream.close();
}
catch(IOException e) {

System.out.println
("Problem writing with file output.");

}
}

}

Reading a Binary File

• We do this essentially the same way that we
write a binary file.

• It is very important that we know exactlyexactly what
the files structure is so we can read it
accurately.

23

The readPrimitive() Methods

• The ObjectInputStream class has several methods of
readPrimitive(di) that allows the programmer to
read the data item di of type Primitive from the file.

• The methods include:
– ois.readInt(i)- read integer value i from the

binary file dos.
– ois.readDouble(x) - read double value x from

the binary file dos.
– ois.readChar(c) – read char value c from the

binary file dos.

BinaryInputDemo.java

import java.io.ObjectInputStream;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.FileNotFoundException;

public class BinaryInputDemo {
public static void main(String[] args) {

try {
ObjectInputStream inputStream = new

ObjectInputStream(new
FileInputStream("numbers.dat"));

System.out.println
("Reading the file \"numbers.dat\"");

int n1 = inputStream.readInt();
int n2 = inputStream.readInt();

24

System.out.println("Numbers read from file:");
System.out.println(n1);
System.out.println(n2);
inputStream.close();

}
catch(FileNotFoundException e) {

System.out.println
("Cannot find file \"numbers.dat\"");

}
catch(IOException e) {

System.out.println
("Problem with input from \"numbers.dat\".");

}
}

}

Files And Records

• Many programming languages and computer
systems treat files as a collection of records,
where you read and write one record at a time.

• Java does not have anything exactly analogous
to records; we use objects instead.

• We will create an implementation of the class
Serializable so the properties of our objects
can be converted into a byte stream and saved
in a binary file.

25

SomeClass.java

import java.io.Serializable;

public class SomeClass implements Serializable {
private int number;
private char letter;

public SomeClass() {
number = 0;
letter = 'A';

}

public SomeClass(int theNumber, char theLetter) {
number = theNumber;
letter = theLetter;

}

public String toString() {
return "Number = " + number +

" Letter " + letter;
}

}

26

ObjectIODemo.java
import java.io.ObjectOutputStream;
import java.io.FileOutputStream;
import java.io.ObjectInputStream;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.FileNotFoundException;

// Demonstrates binaryfile I/O of serializable
// class objects
public class ObjectIODemo {

public static void main(String[] args) {
try {

ObjectOutputStream outputStream
= new ObjectOutputStream(new

FileOutputStream("datafile"));

SomeClass oneObject = new SomeClass(1, 'A');
SomeClass anotherObject

= new SomeClass(42, '2');

outputStream.writeObject(oneObject);
outputStream.writeObject(anotherObject);

outputStream.close();
System.out.println("Data sent fo file.");

}
catch(IOException e) {

System.out.println
("Problem with file output.");

}
System.out.println("Now let\'s reopen the file "

+ " and display the data.");

27

try {
ObjectInputStream inputStream

= new ObjectInputStream(new
FileInputStream("datafile"));

SomeClass readOne
= (SomeClass) inputStream.readObject();

SomeClass readTwo
= (SomeClass) inputStream.readObject();

System.out.println
("The following were read from the file:");

System.out.println(readOne);
System.out.println(readTwo);

}
catch (FileNotFoundException e) {
System.out.println("Cannot find datafile.");

}

catch(ClassNotFoundException e) {
System.out.println

("Problems with file input.");
}
catch(IOException e) {

System.out.println
("Problems with file input.");

}
System.out.println("End of program.");

}
}

28

ArrayIODemo.java

import java.io.ObjectOutputStream;
import java.io.FileOutputStream;
import java.io.ObjectInputStream;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.FileNotFoundException;

public class ArrayIODemo {
public static void main(String[] args) {

SomeClass[] a = new SomeClass[2];
a[0] = new SomeClass(1, 'A');
a[1] = new SomeClass(2, 'B');

try {
ObjectOutputStream outputStream

= new ObjectOutputStream(
new FileOutputStream("arrayfile"));

outputStream.writeObject(a);
outputStream.close();

}
catch(IOException e) {

System.out.println("Error writing to file.");
System.exit(0);

}

System.out.println
("Array written to file arrayfile.");

System.out.println("Now let's re-open the "
+ "file and display the arrow.");

29

SomeClass[] b = null;

try {
ObjectInputStream inputStream

= new ObjectInputStream(
new FileInputStream("arrayfile"));

b = (SomeClass[])inputStream.readObject();
inputStream.close();

}
catch (FileNotFoundException e) {

System.out.println
("Cannot find file arrayfile.");

System.exit(0);
}
catch (ClassNotFoundException e) {

System.out.println
("Problems with file input.");

System.exit(0);
}

catch(IOException e) {
System.out.println

("Problems with file input.");
}
System.out.println("The following array

+ "elements were read from the file:");
int i;
for (i = 0; i < b.length; i++)

System.out.println(b[i]);
System.out.println("End of program.");

}
}

30

Random Access Files

• We usually read files from the beginning to the end.
Files that are always accessed in this fashion as called
sequential access files.

• Sometimes we need to read files from any particular
point to which we may need access. These are called
random access files.

• These have two methods that other files do not have:
getFilePointer() (which takes us to the current
location from which we are reading) and seek()
(which moves us to another location in the file).

RandomAccessDemo.java
import java.io.RandomAccessFile;
import java.io.IOException;
import java.io.FileNotFoundException;

public class RandomAccessDemo {
public static void main(String[] args) {

try {
RandomAccessFile ioStream

= new RandomAccessFile("bytedata", "rw");

System.out.println
("Writing 3 bytes to the file bytedata.");

ioStream.writeByte(1);
ioStream.writeByte(2);
ioStream.writeByte(3);
System.out.println

("the length of the file is now = "
+ ioStream.length());

31

System.out.println
("The file pointer location is "

+ ioStream.getFilePointer());

System.out.println
("Moving the file pointer to location 1.");

ioStream.seek(1);
byte oneByte = ioStream.readByte();
System.out.println

("The value at location 1is " + oneByte);
oneByte = ioStream.readByte();
System.out.println

("The value at the next location is "
+ oneByte);

System.out.println
("Now we can move the file pointer back to ");
System.out.println

("location 1, and change the byte.");

ioStream.seek(1);
ioStream.writeByte(9);
ioStream.seek(1);
oneByte = ioStream.readByte();
System.out.println

("The value at location 1 is now "
+ oneByte);

System.out.println
("Now we can go to the end of the file");

System.out.println
("and write a double.");

ioStream.seek(ioStream.length());
ioStream.writeDouble(41.99);
System.out.println

("the length of the fiule is now = "
+ ioStream.length());

System.out.println
("Returning to location 3, ");

32

System.out.println
("where we wrote the double.");

ioStream.seek(3);
double oneDouble = ioStream.readDouble();
System.out.println

("The double version of location is "
+ oneDouble);

ioStream.close();
}
catch(FileNotFoundException e) {

System.out.println("Problem opening file.");
}
catch (IOException e) {

System.out.println
("Problems with file I/O");

}
System.out.println("End of program.");

}
}

