
CSC 171 - Introduction to

Computer Programming

Lecture #9 – Lists

Data Structures And Algorithms

• Part of the "science" in computer science is

the design and use of data structures and

algorithms

• As you go on in CS, you will learn more

and more about these two areas

Data Structures

• Data structures are particular ways of

storing data to make some operation easier

or more efficient. That is, they are tuned for

certain tasks

• Data structures are suited to solving certain

problems, and they are often associated with

algorithms.

Kinds Of Data Structures

• Roughly two kinds of data structures:

– Built-in data structures, data structures that are

so common as to be provided by default

– User-defined data structures (classes in object

oriented programming) that are designed for a

particular task

Python Built In Data Structures

• Python comes with a general set of built in

data structures:

– lists

– tuples

– string

– dictionaries

– sets

– others...

The Python List Data Structure

• A list is an ordered sequence of items.

• You have seen such a sequence before in a

string. A string is just a particular kind of

list (what kind)?

Make a List

• Like all data structures, lists have a

constructor, named the same as the data

structure. It takes an iterable data structure

and adds each item to the list

• It also has a shortcut, the use of square

brackets [] to indicate explicit items.

Constructing Lists

>>> a_list = [1, 2, 'a', 314159]

>>> weekdays_list = ['Monday', 'Tuesday', 'Wednesday',

'Thursday', 'Friday']

>>> list_of_lists = [[1, 2, 3], ['a', 'b', 'c']]

>>> list_from_collection = list("hello")

>>> a_list

[1, 2, 'a', 314159]

>>> weekdays_list

['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday']

>>> list_of_lists

[[1, 2, 3], ['a', 'b', 'c']]

>>> list_from_collection

['h', 'e', 'l', 'l', 'o']

>>> []

[]

>>>

Similarities With Strings

• concatenate/+ (but only of lists)

• repeat/*

• indexing (the [] operator)

• slicing ([:])

• membership (the in operator)

• len (the length operator)

Operators

[1, 2, 3] + [4]  [1, 2, 3, 4]

[1, 2, 3] * 2  [1, 2, 3, 1, 2, 3]

1 in [1, 2, 3]  True

[1, 2, 3] < [1, 2, 4]  True

• Compare index to index, first difference

determines the result

Differences Between Lists and Strings

• Lists can contain a mixture of any Python

object; strings can only hold characters
1, "bill",1.2345, True

• Lists are mutable (their values can be

changed), while strings are immutable

• Lists are designated with [], with

elements separated by commas, strings use

" "or ' '

The Structure Of A List

Indexing

• can be a little confusing, what does the []

mean, a list or an index?
[1, 2, 3] [1]  2

• Context solves the problem.

– Index always comes at the end of an

expression.

– Index is always preceded by something (a

variable, a sequence).

List of Lists

my_list = ['a', [1, 2, 3], 'z']

• What is the second element (index 1) of that

list? Another list.
my_list[1][0] # apply left to right

mylist[1]  [1, 2, 3]

[1, 2, 3][0]  1

List Function

• len(my_list) – number of elements in the list

len([1, [1, 2], 3])  3

• min(my_list) – smallest element.

– Must all be the same type

• max(my_list) – largest element

– Must all be the same type

• sum(my_list) – sumof the elements –

numeric only

Iteration

• You can iterate through the elements of a

list like you did with a string:
>>> my_list = [1, 3, 4, 8]

>>> for element in my_list:

print(element, end = ' ')

1 3 4 8

>>>

Strings Are Immutable

• Strings are immutable.

– Once created, the object's contents cannot be

changed.

– New objects can be created to reflect a change,

but the object itself cannot be changed

Strings Are Immutable

my_str = 'abc'

#my_str[0] = 'z' # Doesn't work

#Instead, make new str

new_str = my_str.replace('a', 'z')

print(new_str)

Output

zbc

But Lists are Mutable

• Unlike strings, lists are mutable. You can

change the object's contents!

Lists are Mutable

• Unlike strings, lists are mutable. You can

change the object's contents!

• Example
my_str = [1,2, 3]

my_str[0] = 127

print(my_str)

127, 2, 3

>>

List Method

• Remember, a function is a small program

(such as len) that takes some arguments,

the stuff in the parenthesis, and returns

some value

• a method is a function called in a special

way, the dot call. It is called in the context

of an object (or a variable associated with

an object)

Lists Have Methods

my_list = ['a', 1, True]

my_list.append('z')

arguments to

the method

the object that

we are calling

the

method with

the name of

the method

More List Methods

• my_list = ' a' # index assignment

• my_list.append() – Adds an item to the end of the list

• my_list.extend() - Adds an item to the end of the list

• my_list.pop() – removes an item from a list and returns it

• my_list.insert() – inserts an item into a list

• my_list.remove() – removes an item from a list

• my_list.sort() – sorts items on a list

• my_list.reverse() – reverses the order of items on a list

More About List Methods

• Most of these methods do not return a

value.

• This is because lists are mutable, so the

methods modify the list directly. No need to

return anything.

• It can be confusing

Unusual Results

my_list = [4, 7, 1, 2]

my_list = my_list.sort()

my_list None

• What happened was the sort operation changed the

order of the list in place (right side of assignment).
Then the sort method returned None, which was

assigned to the variable. The list was lost and
None is now the value of the variable.

my_list.split()

• The string method split generates a sequence of

characters by splitting the string at certain split-

characters.

• It returns a list.
>>> split_list = 'this is a test'.split()

>>> split_list

['this', 'is', 'a', 'test']

>>> print(split_list)

['this', 'is', 'a', 'test']

>>>

List Indices

• Just as [] can be used to indicate part of a

character string, it can be used to indicate
some elements in a list.

• The indices can be used to indicate more

than one element and by using a negative

sign, it can be used to count from the end of

the list.

List Indices Examples

>>> x = [14, 18, 23, 28, 34, 42, 50, 59]

>>> print(x[5])

42

>>> print (x[3:7])

[28, 34, 42, 50]

>>> print(x[:-2])

[14, 18, 23, 28, 34, 42]

>>> print(x[2:-2])

[23, 28, 34, 42]

>>>

my_list.append()

• append() can be used to insert additional

elements at the end of a list.
>>> x = [14, 18, 23, 28, 34, 42, 50, 59]

>>> print(x[5])

>>> x.append(66)

>>> print(x)

[14, 18, 23, 28, 34, 42, 50, 59, 66]

>>>

my_list.extend()

• extend() can be used to insert additional

elements at the end of a list.

• extend() can be used with other data

structures, such as tuples and sets.

my_list.extend()Examples

>>> x = [14, 18, 23, 28, 34, 43, 50, 59]

>>> y = [66, 72, 79, 86, 96]

>>> x.append(y)

>>> print(x)

[14, 18, 23, 28, 34, 43, 50, 59, [66, 72, 79, 86,

96]]

>>> x = [14, 18, 23, 28, 34, 42, 50, 59]

>>> x.extend(y)

>>> print(x)

[14, 18, 23, 28, 34, 42, 50, 59, 66, 72, 79, 86,

96]

>>>

my_list.pop()

• pop() removes an item from a list and

returns the item.

• Example
>>> x = [14, 18, 23, 28, 34, 42, 50, 59]

>>> y = x.pop()

>>> print(x)

[14, 18, 23, 28, 34, 42, 50]

>>> print(y)

59

>>>

my_list.insert()

• insert() inserts an item into a list at a

specified position on the list.
>>> x = [14, 23, 28, 34, 42, 50, 59]

>>> x.insert(1, 18)

>>> print(x)

[14, 18, 23, 28, 34, 42, 50, 59]

>>>

my_list.remove()

• remove – deletes a specified item from the

list
>>> print(x)

[14, 18, 23, 28, 34, 42, 50, 59]

>>> x.remove(34)

>>> print(x)

[14, 18, 23, 28, 42, 50, 59]

>>>

my_list.sort()

• sort() arranges its elements in order.

• Example
>>> x = [34, 50, 14, 23, 18, 42, 59, 28]

>>> x.sort()

>>> print(x)

[14, 18, 23, 28, 34, 42, 50, 59]

>>>

Sorting

• Only lists have a built-in sorting method.

Thus you often convert your data to a list if

it needs sorting.
>>> my_list = list('xyzabc')

>>> print(my_list)

['x', 'y', 'z', 'a', 'b', 'c']

>>> my_list.sort()

>>> print(my_list)

['a', 'b', 'c', 'x', 'y', 'z']

>>>

sorted()

• The sorted function will break a

sequence into elements and sort the

sequence, placing the results in a list

>>> sort_list = sorted('hi mom')

>>> print(sort_list)

[' ', 'h', 'i', 'm', 'm', 'o']

>>>

my_list.reverse()

• reverse() reverses the order of elements

in a list.
>>> print(x)

[14, 18, 23, 28, 34, 42, 50, 59]

>>> x.reverse()

>>> print(x)

[59, 50, 42, 34, 28, 23, 18, 14]

>>>

Reverse Words in a String

• join method of string places the calling string

between every element of a list
>>> my_str = 'This is a test'

>>> string_elements = my_str.split()

>>> print(string_elements)

['This', 'is', 'a', 'test']

>>> reversed_elements = []

>>> for element in string_elements:

reversed_elements.append(element[::-1])

>>> print(reversed_elements)

['sihT', 'si', 'a', 'tset']

>>>

Program To Find Class Average On A Test

Find the class average on a test

numGrades = 10

def get_grades() :

grades = []

Each time the loop, read another grade

into the array

for count in range(0, 10) :

grade_str = input("Enter a grade ")

grades.append(int(grade_str))

return(grades)

calc_average() - Add up the grades, divide

by the number of grades to

find the average

def calc_average(grades) :

sum = 0

for this_grade in grades :

sum = sum + this_grade

return(sum/numGrades)

letter_grade() - Translate the score into

a letter grade

def letter_grade(score) :

if score >= 90 :

return('A')

elif score >= 80 :

return('B')

elif score >= 70 :

return('C')

elif score >= 60 :

return('D')

return('F')

printResults() - Print the average and

the grades

def print_results(grades, mean) :

print("The grades are:")

for std_grade in grades :

print(std_grade)

print("The average is ", mean, \

" corresponding to a grade of ", \

letter_grade(mean))

The main program

grades = get_grades()

Find the average

average = calc_average(grades)

Print the average and the grades

print_results(grades, average)

Example - Anagrams

• Anagrams are words that contain the same

letters arranged in a different order. For

example: 'iceman' and 'cinema'

• Strategy to identify anagrams is to take the

letters of a word, sort those letters, than

compare the sorted sequences. Anagrams

should have the same sorted sequence

are_anagrams()

def are_anagrams(word1, word2) :

"""Return True if words are anagrams"""

Sort the characters in the words

word1_sorted = sorted(word1)

word2_sorted = sorted(word2)

Check that the sorted words are identical

Compare the sorted lists

if word1_sorted == word2_sorted :

return True

else :

return False

The Complete Anagram Program

def are_anagrams(word1, word2) :

"""Return True if words are anagrams"""

Sort the characters in the words

word1_sorted = sorted(word1)

word2_sorted = sorted(word2)

Check that the sorted words are identical

Compare the sorted lists

if word1_sorted == word2_sorted :

return True

else :

return False

print("Anagram Test")

Input two words

two_words = input("Enter two space-separated

words: ")

Split them into a list of words

word1, word2 = two_words.split()

Return True or False

if are_anagrams(word1, word2) :

print("The words are anagrams.")

else :

print("The words are not anagrams.")

Repeating Input Prompt for Valid Input

valid_input_bool = False

while not valid_input_bool :

try :

two_words = input\

("Enter two space-separated words: ")

Split them into a list of words

word1, word2 = two_words.split()

valid_input_bool = True

except ValueError :

print("Bad Input")

only runs when no error,

otherwise go around

again

Final, Complete Program

def are_anagrams(word1, word2) :

"""Return True if words are anagrams"""

Sort the characters in the words

word1_sorted = sorted(word1)

word2_sorted = sorted(word2)

Check that the sorted words are identical

Compare the sorted lists

if word1_sorted == word2_sorted :

return True

else :

return False

print("Anagram Test")

Input two words, checking for errors

valid_input_bool = False

while not valid_input_bool :

try :

two_words = input\

("Enter two space-separated words: ")

Split them into a list of words

word1, word2 = two_words.split()

valid_input_bool = True

except ValueError :

print("Bad Input")

Return True or False

if are_anagrams(word1, word2) :

print("The words %s and %s are anagrams."

%(word1, word2))

else :

print("The words %s and %s are not anagrams."

%(word1, word2))

