
Introduction to Computer

Programming

Lecture #7 - Modular Programming I:

Functions

What Are Functions?

• We have seen a few examples of procedures (in
Python, we call them functions; we will explain
this a little later):
– print, which we have used to display output on the

screen

– input, which we have used to get input from the
keyboard as strings.

– random.randint(), which we have used to get a
random numbers

• Procedures allow us to use software routines that
have already been written (frequently by other
people) in our programs.
E.g., magic = random.randint(1, 100)

Why Use Procedures?

• Procedures offer several advantages when
we write programs:

– They allow us to concentrate on a higher level
abstractions, without getting bogged down in
details that we are not yet ready to handle.

– They make it easier to divide the work of
writing a program among several people.

– They are re-usable; i. e., we write it once and
can use it several times in a program and we
can even copy it from one program to another.

Simple Functions to print messages

• Let’s start with a simple function: Let’s a function that will
print instructions for a user playing the “Magic Number”
game:
printInstruction() - Print instructions for

the user

def print_instructions() :

print("The object of the game is to find out")

print("which number the computer has picked. The")

print("computer will tell you if you guessed too")

print("high a number or too low. "\

+ "Try to get it with");

print("as few guesses as possible.\n")

Simple Functions For Printing Messages

• The general form of the syntax is:
def print_instructions() :

Statements(s)
Function header

Executable portion

Putting the Pieces Together

def print_instructions() :

print("The object of the game is to find out")

print("which number the computer has picked. The")

print("computer will tell you if you guessed too")

print("high a number or too low. "\

+ "Try to get it with");

print("as few guesses as possible.\n")

The magic number game has the user trying to

guess which number between 1 and 100 the

computer has picked

tries = 1;

print_instructions()

Use the random number function to pick a

number

magic = random.randint(1, 100)

Let the user make a guess

guess = int(input("Guess ?"))

while guess != magic :

… …

If the user won, tell him/her

print("** Right!! ** ")

print(magic, " is the magic number\n");

Tell the user how many guesses it took

print("You took ", tries, " guesses\n")

What are parameters?

• A parameter is a value or a variable that is used to
provide information to a function that is being
called.

• If we are writing a function to calculate the square
of a number, we can pass the value to be squared
as a parameter:

printSquare(5);

printSquare(x)

• These are called actual parameters because these
are the actual values (or variables) used by the
function being called.

actual parameter

Formal Parameters

• Functions that use parameters must have them
listed in the function header. These parameters are
called formal parameters.

def print_square(x) :

square = x*x

print("The square of ", x, " is ", square)

formal parameter

Parameter Passing
printSquare(5)

printSquare(x)

def print_square(x) :

square = x*x

print("The square of ", x, " is ", square)

In both cases, calling the function requires copying the

actual parameter’s value where the function can use it.

Initially, x has whatever value the actual parameter has.

Parameter Passing (continued)

printSquare(5)

x initially is set to 5.

square is then set to the

value of x2 or 52 or 25.

def print_square(x) :

square = x*x

print("The square of ", x, " is ",

square)

Parameter Passing (continued)

printSquare(x)

def print_square(x) :

square = x*x

print("The square of ", x, " is ",

square)

x initially is set to whatever value x

had in the main program. If x had the

value 12, square is then set to the

value of x2 or 122 or 144.

Why parameters?

• Parameters are useful because:

– They allow us to use the same function in
different places in the program and to work
with different data.

– They allow the main program to communicate
with the function and pass it whatever data it is
going to use.

– The same value can have completely different
names in the main program and in the function.

The Squares Program

printSquare() - Prints the square of whatever

value that it is given.

def print_square(x) :

square = x*x

print("The square of ", x, " is ",square)

A driver for the print_square function

Get a value and print its square

value_str = input("Enter a value ?")

value_float = float(value_str)

print_square(value_float)

the formal parameter

in the function header
the actual parameter

in the function call

Passing Parameters - When The User

Inputs 12

Value x

square

12 12

144

Passing Parameters - When The User

Inputs 6

Value x

square

6 6

36

A Rewrite of main

A driver for the print_square function

value1 = 45

value2 = 25

print_square(value1)

print_square(value2)

Passing Parameters - Using square Twice In One Program

Value1 x

square

45 45

2025

Value1

x

square

45

25

625

Value2 25

Value2 25

Calculating the Average of 3 Values Using a

Function

• Let’s re-examine how to find the average of 3

values. We have to:

1. Get the values as input

2. Calculate and display the average

1. Get the values as input

2. Calculate and display the average

1.1 Get value 1

1.2 Get value 2

1.3 Get value 3

1.1 Get value 1

1.2 Get value 2

1.3 Get value 3

2. Calculate and display the average

value1 = int(input("Enter a value ?"))

value2 = int(input("Enter a value ?"))

value3 = int(input("Enter a value ?"))

value1 = int(input("Enter a value ?"))

value2 = int(input("Enter a value ?"))

value3 = int(input("Enter a value ?"))

2. Calculate and display the average

find_average(value1, value2, value3)

The average3 Program

Find the average of three numbers using a

function

find_average() - Find the average of three

numbers

def print_average(x, y, z) :

sum = x + y + z

average = sum / 3

print("The average is %3.1f\n" % average)

Main program - Find the average of three

numbers using a function

Get the inputs

value1 = int(input("Enter a value ?"))

value2 = int(input("Enter a value ?"))

value3 = int(input("Enter a value ?"))

Call the function that calculates and

prints the average

print_average(value1, value2, value3)

Example – x to the nth power

• Let’s write a function to calculate x to the

nth power and a driver for it (a main

program whose sole purpose is to test the

function.

• Our basic algorithm for the function:

– Initialize (set) the product to 1

– As long as n is greater than 0:

• Multiply the product by x

• Subtract one from n

power Program

A program to calculate 4-cubed using a

function called power

power() - Calculates y = x to the nth power

def power(y, x, n) :

y = 1.0

while n > 0 :

y = y * x

n = n - 1

print("Our result is ", y)

Main Program

Calculate 4-cubed using power

x = 4.0

n = 3

y = 1.0

power(y, x, n)

print("The answer is ", y)

The Output From power

Our result is 64

The answer is 1
Shouldn’t these be the

same numbers?

The problem is that communication using

parameters has been one-way – the function

being called listens to the main program , but the

main program does not listen to the function.

Value Parameters

• The parameters that we have used all pass

information from the main program to the

function being called by copying the values

of the parameters. We call this passing by

value, because the value itself is passed.

• Because we are using a copy of the value

copied in another location, the original is

unaffected.

Functions

• Some functions perform specific tasks and

do not produce any one data item that seem

to be their whole reason for existence.

• Other functions are all about producing

some value or data item

Functions That Return Nothing

• Normally a function is expected to produce some result
which is returns to the main program:

average = calcAverage(x, y, z);

• The data type of the function’s result is also called the
function’s type.

Writing Functions That Return Results

• In Python, functions that return a result look a lot

like functions that don’t return anything, with one

key difference: there has to be a statement that

indicates the value being returned:

def average3(a, b, c) :

sum = a + b + c

mean = sum / 3.0

return mean

The result that we are

returning is mean

Writing Functions That Return Results

• The syntax is:

return expression

• Return statements have contain expressions,

variables, constants or literals:

return True

return 35.4

return sum

return sum/3

Rewriting the average3 Function

def average3(a, b, c) :

sum = a + b + c

return sum / 3.0

Maximum and Minimum

• Let’s write a pair of functions that find the

minimum and maximum of two values a and b.

• Initial algorithm for maximum:

Return the larger of a and b:

• If we refine this:

1.1 IF a > b return a

1.1 else return b //a < = b

•For minimum, we replace > with <

def maximum(x, y) :

if x > y :

return x

else :

return y

def minimum(x, y) :

if x < y :

return x

else :

return y

Rewriting the Payroll Program

A simple payroll program that uses a function

to calculate the gross pay

gross() - Calculate the gross pay.

def gross(hours, rate):

If hours exceed 40, pay time and a half

if hours > 40 :

pay = 40*rate + 1.5*rate*(hours-40)

else :

pay = rate * hours

return pay

Main Program

Ask the user for payrate

rate = float(input("What is rate of pay for the

employee?"))

Enter the hours worked

hours = float(input("Enter the hours worked?"))

Get the gross pay

pay = gross(hours, rate)

print("Gross pay is $%4.2f\n" % pay)

return

• return serves two purposes:

– It tells the computer the value to return as the

result.

– It tell the computer to leave the function

immediately and return the main program.

Def gross(hours, rate) :

If hours exceed 40, pay time and a half

if hours > 40 :

return(40*rate + 1.5*rate*(hours-40))

return(rate*hours)

Rewriting pow

• We can make the pow function tell the main
program about the change in y by having it

return the value as the result:
def power(x, n) :

… …

The rewritten pow program

A program to calculate 4-cubed using a

function called power

power() - Calculates y = x to the nth

power

def power(x, n) :

prod = 1.0

while n > 0 :

prod = prod * x

n = n - 1

print("Our result is " , prod)

return prod

Main program

x = 4.0

n = 3

y = power(x, n)

print("The answer is ", y)

The New Output From power

Our result is 64

The answer is 64
Exactly what we would

expect Why?

Communication using the result is two-way – the

function being called listens to the main program,

but the main program listens to the function

because data changes are explicitly passed back

to the main program.

An Example – square2

• Let’s rewrite the square program so that the

function calculates the square and passes its value

back to the main program, which will print the

result:

This illustrates how to use functions to

find the square of a value

findSquare() - Calculates the square of

whatever value it is given.

def find_square(x) :

square = x*x

return square

Main Program - A driver for the findSquare

method

value = float(input("Enter a value ?"))

square = find_square(value);

print("The square of ", value, " is ", square)

Comparing print_square and find_square

• What are the differences between print_square
and find_square?

• print_square:

– uses value parameters

– prints the square; it doesn’t have to pass that
value to the main program

• find_square:

– Returns the result

– does not print the square; it must pass the value
back to the main program

Example: Average3

• Let’s write a program which will find the

average of three numbers:

• Our algorithm is:

1. Read the values

2. Calculate the average

3. Print the average

Refining average3’s algorithm

1. Read the values

2. Calculate the average

3. Print the average

1.1 Get value1

1.2 Get value2

1.3 Get value3

Refining average3’s algorithm (continued)

1.1 Get value1
1.2 Get value2
1.3 Get value3

2. Calculate the average

3. Print the average

value1 = int input("Enter a value ? "))

value2 = int input("Enter a value ? "))

value3 = int input("Enter a value ? "))

Refining average3’s algorithm (continued)

value1 = int input("Enter a value ? "))

value2 = int input("Enter a value ? "))

value3 = int input("Enter a value ? "))

2. Calculate the average

3. Print the average

average = find_average(value1, value2, value3)

Refining average3’s algorithm (continued)

value1 = int input("Enter a value ? "))

value2 = int input("Enter a value ? "))

value3 = int input("Enter a value ? "))

average = find_average(value1, value2, value3)

3. Print the average

print("The average is ", average)

Average3c.py

Find the average of three numbers using a

function

find_average() - Find the average of three

numbers

def find_average(x, y, z) :

sum = x + y + z

average = sum / 3.0

return average

Main program

Get the inputs

value1 = int(input("Enter a value ? "))

value2 = int(input("Enter a value ? "))

value3 = int(input("Enter a value ? "))

Call the function that calculates the

average

average = find_average(value1, value2, value3)

print("The average is ", average)

A program to calculate Grade Point Average

Example - Ivy College uses a grading system, where the

passing grades are A, B, C, and D and where F (or any other

grade) is a failing grade. Assuming that all courses have equal

weight and that the letter grades have the following numerical

value:
Letter grade Numerical value

A 4

B 3

C 2

D 1

F 0

write a program that will calculate a student's grade point

average.

Let’s Add– Dean’s List

• Let’s include within the program a method

that will print a congratulatory message if

the student makes the Dean’s List.

• We will write a function deansList that

will print the congratulatory message and

another method printInstructions.

A program to calculate Grade Point Average

Input - The student's grades

Output - Grade point average and a congratulatory message (if

appropriate)
Other information

"A" is equivalent to 4 and so on

GPA = Sum of the numerical equivalents/ Number of grades

Our first step is to write out our initial algorithm:

1. Print introductory message

2. Add up the numerical equivalents of all the grades

3. Calculate the grade point average and print it out

4. Print a congratulatory message (if appropriate)

Refining the GPA Algorithm

1. Print introductory message

2. Add up the numerical equivalents of all the grades

3. Calculate the grade point average and print it out

4. Print a congratulatory message (if appropriate)

print_instructions()

Refining the GPA Algorithm

print_instructions()

2. Add up the numerical equivalents of all the grades

3. Calculate the grade point average and print it out

4. Print a congratulatory message (if appropriate)

2.1 Get the first grade

2.2 While the grade is not X:

2.3 Add the numerical equivalent to the total

2.4 Get the next grade

Refining the GPA Algorithm

print_instructions()

2.1 Get the first grade

2.2 While the grade is not X:

2.3 Add the numerical equivalent to the total

2.4 Get the next grade

3. Calculate the grade point average and print it out

4. Print a congratulatory message (if appropriate)

3.1 Calculate Gpa = Point total / Number of courses

3.2 Print the Gpa

Refining the GPA Algorithm

print_instructions()

2.1 Get the first grade

2.2 While the grade is not X:

2.3 Add the numerical equivalent to the total

2.4 Get the next grade

3.1 Calculate Gpa = Point total / Number of courses

3.2 Print the Gpa

4. Print a congratulatory message (if appropriate)

deans_list(gpa)

Refining the GPA Algorithm

print_instructions()

2.1 Get the first grade

2.2 While the grade is not X:

2.3 Add the numerical equivalent to the total

2.4 Get the next grade

3.1 Calculate Gpa = Point total / Number of courses

3.2 Print the Gpa
deans_list(gpa)

total = total + convert_grade(grade)

num_courses = num_courses + 1

Refining the GPA Algorithm

print_instructions()

2.1 Get the first grade

2.2 While the grade is not X:
total = total + convert_grade(grade)

num_courses = num_courses + 1

2.4 Get the next grade

3.1 Calculate Gpa = Point total / Number of courses

3.2 Print the Gpa
deans_list(gpa)

input_str = input("What grade did you get in" \

" your first class?")

grade = input_str[0]

Refining the GPA Algorithm

print_instructions()

input_str = input("What grade did you get in" \

" your first class?")

grade = input_str[0]

2.2 While the grade is not X:
total = total + convert_grade(grade)

num_courses = num_courses + 1

2.4 Get the next grade

3.1 Calculate Gpa = Point total / Number of courses

3.2 Print the Gpa
deans_list(gpa) while grade != 'X' :

Refining the GPA Algorithm

print_instructions()

input_str = input("What grade did you get in" \

" your first class?")

grade = input_str[0]

while grade != 'X’ :

total = total + convert_grade(grade)

num_courses = num_courses + 1

2.4 Get the next grade

3.1 Calculate Gpa = Point total / Number of courses

3.2 Print the Gpa
deans_list(gpa)

Get the next course grade

input_str = input("What grade did you get "\

"in the next class?")

grade = input_str[0]

Refining the GPA Algorithm

print_instructions()

input_str = input("What grade did you get in" \

" your first class?")

grade = input_str[0]

while grade != 'X’ :

total = total + convert_grade(grade)

num_courses = num_courses + 1

Get the next course grade

input_str = input("What grade did you get "\

"in the next class?")

grade = input_str[0]

3.1 Calculate Gpa = Point total / Number of courses

3.2 Print the Gpa
deans_list(gpa) gpa = total / num_courses

Refining the GPA Algorithm

print_instructions()

input_str = input("What grade did you get in" \

" your first class?")

grade = input_str[0]

while grade != 'X’ :

total = total + convert_grade(grade)

num_courses = num_courses + 1

Get the next course grade

input_str = input("What grade did you get "\

"in the next class?")

grade = input_str[0]

gpa = total / num_courses

3.2 Print the Gpa
deans_list(gpa)

print("Your grade point average is %4.2f\n" % gpa)

The Main Program

print_instructions()

input_str = input("What grade did you get in" \

" your first class?")

grade = input_str[0]

while grade != 'X’ :

total = total + convert_grade(grade)

num_courses = num_courses + 1

Get the next course grade

input_str = input("What grade did you get "\

"in the next class?")

grade = input_str[0]

gpa = total / num_courses

print("Your grade point average is %4.2f\n" % gpa)

deans_list(gpa)

Converting the Grade

IF Grade = 'A' THEN Numerical grade is 4

ELSE IF Grade = 'B' THEN Numerical grade is 3

ELSE IF Grade = 'C' THEN Numerical grade is 2

ELSE IF Grade = 'D' THEN Numerical grade is 1

if grade == 'A' :

return 4

Converting the Grade

if grade == 'A' :

return 4

ELSE IF Grade = 'B' THEN Numerical grade is 3

ELSE IF Grade = 'C' THEN Numerical grade is 2

ELSE IF Grade = 'D' THEN Numerical grade is 1

elif grade == 'B' :

return 3

Converting the Grade

if grade == 'A' :

return 4

elif grade == 'B' :

return 3

ELSE IF Grade = 'C' THEN Numerical grade is 2

ELSE IF Grade = 'D' THEN Numerical grade is 1

elif grade == 'C' :

return 2

Converting the Grade

if grade == 'A' :

return 4

elif grade == 'B' :

return 3

elif grade == 'C' :

return 2

ELSE IF Grade = 'D' THEN Numerical grade is 1

elif grade == 'D' :

return 1

Converting the Grade

def convert_grade(letter_grade) :

if grade == 'A' :

return 4

elif grade == 'B' :

return 3

elif grade == 'C' :

return 2

elif grade == 'D' :

return 1

elif grade != 'F' :

print("A grade of ", grade

+ " is assumed to be an F\n")

return 0

The deanLists() method

IF gpa >= 3.2

Print congratulatory message

The Entire DeansList Program
Calculates a grade point average assuming

that all courses have the same point value

and that A, B, C and D are passing grades and

that all other grades are failing.

print_instructions() - Prints instructions

for the user

def print_instructions() :

Print an introductory message

print("This program calculates your grade " \

+ "point average assuming that all")

print("courses have the same point value.")

print("It also assumes that grades of " \

+ A, B, C and D")

print("are passing and that all other "\

+ "grades are failing.")

print("To indicate that you are finished, " \

+ "enter a grade of \'X\'\n\n")

convert_grade - Convert an A to a 4, B to a 3,

etc. so it can be added it to

the total

def convert_grade(letter_grade) :

if letter_grade == 'A' :

return 4

elif letter_grade == 'B' :

return 3

elif letter_grade == 'C' :

return 2

elif letter_grade == 'D' :

return 1

elif letter_grade != 'F' :

print("A grade of ", grade

+ " is assumed to be an F\n")

return 0

deans_list() - Print a message if (s)he made

dean's list

def deans_list(gpa) :

if gpa >= 3.2 :

print("Congratulations!! You made" \

+ " dean\'s list!!\n\n");

Main Program

num_courses = 0

total = 0;

Tell the user how to use the program

print_instructions()

Get the first course grade

input_str = input("What grade did you get in" \

" your first class?")

grade = input_str[0]

Add up the numerical equivalents of

the grades

while grade != 'X' :

total = total + convert_grade(grade)

num_courses = num_courses + 1

Get the next course grade

input_str = input("What grade did you get "\

"in the next class?")

grade = input_str[0]

Divide the point total by the number of

classes to get the grade point average

and print it.

gpa = total / num_courses

print("Your grade point average is %4.2f\n" % gpa)

deans_list(gpa)

Revising the Nim program

• Let’s revise the Nim program to use
functions.

• We’ll create the following functions to
subdivide the work:

print_instructions

get_move

plan_move

update_sticks

Nim2.java

printInstructions() - Print instructions for

the player

def print_instructions() :

Print the instructions

print("There are seven (7) sticks on the " \

“ + table.")

print("Each player can pick up one, two , or" \

+ " three sticks")

print("in a given turn. A player cannot pick"\

+ " up more than");

print("three stick nor can a player pass.\n")

get_move() - Get the player's next move,

testing to ensure that it is legal

and that there are enough sticks

on the table.

def get_move(sticksLeft) :

pick_up = 0

move = False

How many sticks is the user taking

while not move :

pick_up = int(input("How many sticks do " \

+ " you wish to pick up ?"))

Make sure its 1, 2 or 3

if pick_up < 1 or pick_up > 3 :

print(pick_up, \

" is not a legal number of sticks")

Make sure that there are enough sticks

on the table

elif pick_up > sticksLeft :

print("There are not ", pick_up, \

" sticks on the table")

else :

move = True

return pick_up

plan_move() - Plan the computer's next move

def plan_move(sticksLeft) :

reply = 0

Plan the computer's next move

if sticksLeft == 6 or sticksLeft == 5 \

or sticksLeft ==2 :

reply = 1

elif sticksLeft == 4 :

reply = 3

elif sticksLeft == 3 :

reply = 2

return reply

updateSticks() - Update the count of sticks

left on the table and

determine if either the

player or the computer has

won.

def updateSticks(sticksLeft, reply) :

If neither player won, get ready for the

next move

sticksLeft = sticksLeft - reply

print("The computer picked up ", \

reply, " sticks.")

print("There are now ", sticksLeft, \

" sticks left on the table.\n\n\n")

return sticksLeft

Main Program

Play the game Nim against the computer

sticksLeft = 7

pick_up = 0

reply = 0

winner = False

answer = ' '

print_instructions()

Find out if the user wants to go first or

second

while answer.lower() != 'f’ \

and answer.lower() != 's' :

answerString = input("Do you wish to go" \

+ " (f)irst or (s)econd ?")

answer = answerString[0]

If the user goes second, have the computer

take two sticks.

if answer.lower() == 's' :

reply = 2

sticksLeft = sticksLeft - reply

print("The computer took ", reply, \

" sticks leaving ",sticksLeft,\

" on the table.")

else :

If the user goes first, tell him how many

sticks are on the table

print("There are ", sticksLeft, \

" on the table.")

As long as there is no winner, keep playing

while not winner :

pick_up = get_move(sticksLeft)

Take the sticks off the table

sticksLeft = sticksLeft - pick_up

See if the user won

if sticksLeft == 1 :

print("Congratulations! You won!")

winner = True;

See if the user lost

elif sticksLeft == 0 :

print("Sorry, the computer has ", \

"won - you have lost...")

winner = True

else :

reply = plan_move(sticksLeft)

if not winner :

sticksLeft = updateSticks(sticksLeft, reply)

Preconditions and Postconditions

• Preconditions – are conditions that we expect and

require to be true before entering the procedure

• Postconditions– are conditions that we expect and

require to be true after exiting the procedure

• Examples in square3:

– getinput has a postcondition that a value was read in

and that the value is set.

– find average has a precondition that all value1, value2

and value al have values.

