
1

CSC 171 - Introduction to

Computer Programming

Lecture #6 - Stringing Along – Using

Character and String Data

How Do Computer Handle

Character Data?

• Like all other data that a computer handles,

characters are stored in numeric form.

• A particular code represents a particular

character.

• The most commonly used code was ASCII

(American Standard Code for Information

Interchange). Python uses a code called

Unicode.

2

Example: Comparing Characters

char1 = 'a'

char2 = 'b'

char3 = "A" # Can be enclosed with ' ' or " "

if char1 > char2 :

print("Very good") # also true for strings

else :

print('Very bad')

if char1 > char3 :

print("Very good")

else :

print("Very bad")

What are Strings?

• A collection of characters that are read and written

together to form words, numbers and so on are

called strings.

• Strings have certain methods that can be used to

manipulate them. At the same time, they can be

used in some ways that are like the basic data type

in Python, such as int and float.

• Individual characters in Python are considered
string of length 1.

3

Assigning a Value to String

• Every character is “mapped” (associated)

with an integer

• UTF-8, subset of Unicode, is such a

mapping

• The function ord() takes a character and

returns its UTF-8 integer value, chr()

takes an integer and returns the UTF-8

character.

Subset of UTF-8

Char Dec Char Dec Char Dec

SP 32 @ 64 ` 96

! 33 A 65 a 97

" 34 B 66 b 98

35 C 67 c 99

$ 36 D 68 d 100

% 37 E 69 e 101

& 38 F 70 f 102

' 39 G 71 g 103

(40 H 72 h 104

4

Subset of UTF-8 (continued)
Char Dec Char Dec Char Dec

) 41 I 73 i 105

* 42 J 74 j 106

+ 43 K 75 k 107

, 44 L 76 l 108

- 45 M 77 m 109

. 46 N 78 n 110

/ 47 O 79 o 111

0 48 P 80 p 112

1 49 Q 81 q 113

2 50 R 82 r 114

3 51 S 83 s 115

4 52 T 84 t 116

Assigning a Value to String

• A value can be assigned to a string by

putting the characters inside single or

double quotes:
>>> s = "This is the first"

>>> print (s)

This is the first

>>> t = 'This is the second'

>>> print(t)

This is the second

>>>

5

Python String Input/Output - An

Example
s = input(("Enter your string"))

print("Your string is \"", s, "\".")

>>>

Enter your stringThis is the first

Your string is " This is the first ".

>>>

Example: Comparing Strings

string1 = "as"

string2 = "As"

string3 = "apple" # Can be enclosed with ' ‘ or "

"

if string1 > string2 :

print("Very good") # also true for strings

else :

print('Very bad')

if string1 > string3 :

print("Very good")

else :

print("Very bad")

6

Concatenation and Repetition

• Concatenation is the operation where we join two strings

together into one longer string.

s = "The " + "Second"

print(s)

• will print "The Second"

• Repetition is the operation where we create a string that

contains the same sequence of characters multiple times.

s = "my" * 3

print(s)

will print "mymymy"

The Python String Functions and

Methods

• A particular element of the string is

accessed by the index of the element

surrounded by square brackets
hello_str = 'Hello World'

print(hello_str[1]) prints e

print(hello_str[-1]) prints d

print(hello_str[11]) ERROR

7

Slicing – The Rules

• Slicing is the ability to select a subsequence of the
overall sequence

• Uses the syntax [start : finish], where:
– start is the index of where we start the subsequence

– finish is the index of one after where we end the
subsequence

• If either start or finish are not provided, it
defaults to the beginning of the sequence for
start and the end of the sequence for finish

Half Open Range for Slices

• Slicing uses what is called a half-open range

• The first index is included in the sequence

• The last index is one after what is included

8

Indexing and Slicing

Indexing and Slicing

9

Indexing and Slicing

Indexing and Slicing

10

Extending Slicing

• Also takes three arguments:

– [start:finish:countBy]

• Defaults are:

– start is beginning, finish is end, countBy

is 1.

• Example

my_str = 'hello world'

my_str[0:11:2] 'hlowrd'

Every other letter

Extended Slicing

11

Some Python Idioms

• Idioms are python “phrases” that are used for a
common task that might be less obvious to non-
python folk

• How to make a copy of a string:
>>> my_str = 'hi mom'

>>> new_str = my_str[:]

>>> print(new_str)

hi mom

>>>

Some Python Idioms

• Idioms are python “phrases” that are used for a
common task that might be less obvious to non-
python folk

• How to reverse a string
>>> my_str = "madam I'm adam"

>>> reverseStr = my_str[::-1]

>>> print(reverseStr)

mada m'I madam

>>>

12

Some Python Idioms

• Idioms are python “phrases” that are used for a
common task that might be less obvious to non-
python folk

• How to make a copy of a string:

my_str = 'hi mom'

new_str = my_str[:]

• How to reverse a string

my_str = "madam I'm adam"

reverseStr = myStr[::-1]

Sequences are Iterable

• The for loop iterates through each element of a sequence

in order. For a string, this means character by character:

>>> for char in 'Hi mom' :

print(char, type(char))

H <class 'str'>

i <class 'str'>

<class 'str'>

m <class 'str'>

o <class 'str'>

m <class 'str'>

>>>

13

Basic String Operations

s = 'spam'

• Length operator len()
len(s) 4

• + is concatenate
new_str = 'spam' + '-' + 'spam-'

print(new_str) spam-spam-

• * is repeat, the number is how many times

new_str * 3

'spam-spam-spam-spam-spam-spam-'

Membership Operations

• Can check to see if a substring exists in the
string, the in operator. Returns True or
False

my_str = 'aabbccdd'

'a' in my_str True

'abb' in my_str True

'x' in my_str False

14

Some Details

• Both + and * on strings makes a new string,

does not modify the arguments

• Order of operation is important for

concatenation, irrelevant for repetition

• The types required are specific. For

concatenation you need two strings, for

repetition a string and an integer

What Does a + b Mean?

• What operation does the above represent? It

depends on the types!

– Two strings, concatenation

– Two integers addition

• The operator + is overloaded.

– The operation + performs depends on the

types it is working on

15

Functions

• A function is a program that performs some

operation. Its details are hidden

(encapsulated), only it's interface provided.

• A function takes some number of inputs

(arguments) and returns a value based on

the arguments and the function's operation.

The type Function

• You can check the type of the value
associated with a variable using type

– my_str = 'hello world'

– type(my_str) <type 'str'>

– my_str = 245

– type(my_str) <type 'int'>

16

String Function : len

• The len function takes as an argument a

string and returns an integer, the length of a

string.

my_str = 'Hello World'

len(my_str) 11 # space

counts!!

String Method

• A method is a variation on a function

– like a function, it represents a program

– like a function, it has input arguments and an

output

• Unlike a function, it is applied in the

context of a particular object.

• This is indicated by the dot notation

invocation

17

Python String Methods

• s.strip() - Returns s with leading and trailing

white space characters removed.

• s.lstrip() – Returns s with leading white space

characters removed.

• s.rstrip() – Returns s with trailing white space

characters removed.

• s.find(t) - Returns the starting position of the

first occurrence of the substring t within s.

• s.rfind(t) – Returns the startingposition of the

rightmost occurrence of the substring t within s.

s.strip()

• Returns s with leading and trailing white

space

• characters removed.
s = " This Is The First "

s = s.strip();

print("My String is \'", s, "\'")

print ("It has ", len(s), " characters.")

• The output is:
My String is 'This Is The First'

It has 17 characters.

18

s.lstrip()

• Returns s with leading white space

characters removed.
s = " This Is The First "

s = s.lstrip();

print("My String is \'", s, "\'")

print ("It has ", len(s), " characters.")

• The output is:
My String is ' This Is The First '

It has 18 characters.

s.rstrip()

• Returns s with trailing white space

characters removed.
s = " This Is The First "

s = s.rstrip();

print("My String is \'", s, "\'")

print ("It has ", len(s), " characters.")

• The output is:
My String is ' This Is The First '

It has 18 characters.

19

s.find(t)

• s.find() can be used to find where a

substring appears within s.

• Example
s = "John Francis Xavier Smith"

i = s.find("Fran");

t = s[i:i+7]

print(t, "\'begins at position", i)

• Output
Francis 'begins at position 5

s.rfind(t)

• s.rfind() can be used to find where the

last occurrence of a substring appears

within s.

• Example
s = "John Francis Xavier Smith"

i = s.find(“Xav");

t = s[i:i+7]

print(t, "\'begins at position", i)

• Output
Francis 'begins at position 20

20

Dot Notation

• In generation, dot notation looks like:

object.method(...)

• It means that the object in front of the dot is

calling a method that is associated with that

object's type.

• The method's that can be called are tied to

the type of the object calling it. Each type

has different methods.

Python String Methods

• s.replace(t, u) - Returns s with the next

occurrence of t replaced by c’s text and trailing

white space characters removed.

• s.ljust(x) – Returns s left justified within a

string of length x.

• s.rjust(x) – Returns s right justfied within a

string of length x.

• s.center(x) - Returns s with its text centered

within a string of length x.

21

s.replace(t, u)

• s.replace will return a string with every

occurrence of specified its text replaced.

• You can include the number of times you wish

this replacement to occur

• Example
s = "James Roosevelt Roosevelt"

t = s.replace("Roosevelt", "Rosie")

print("\"", t, "\"")

t = s.replace("Roosevelt", "Rosie", 1)

print("\"", t, "\"")

s.ljust(x)

• s.ljust will return a string with the text left

adjusted within a field of a given width

• Example
s = "John Francis Xavier Smith"

i = len(s)

print(i)

s = s.ljust(i+5);

print("\"", s, "\"")

• Output
25

" John Francis Xavier Smith "

22

s.rjust(x)

• s.ljust will return a string with the text left

adjusted within a field of a given width

• Example
s = "John Francis Xavier Smith"

i = len(s)

print(i)

s = s.rjust(i+5);

print("\"", s, "\"")

• Output
25

" John Francis Xavier Smith "

s.center(x)

• s.center will return a string with the text

centered within a field of a given width

• Example
s = "John Francis Xavier Smith"

i = len(s)

print(i)

s = s.center(i+5);

print("\"", s, "\"")

Output
25

" John Francis Xavier Smith "

23

Chaining Methods

Methods can be chained together.

• Perform first operation, yielding an object

• Use the yielded object for the next method

my_str = 'Python Rules!'

my_str.upper() 'PYTHON RULES!'

my_str.upper().find('O')

 4

Nesting Methods

• You can “nest” methods, that is the result of one

method as an argument to another

• Remember that parenthetical expressions are did

“inside out”: do the inner parenthetical expression

first, then the next, using the result as an argument

• a_str.find('t', a_str.find('t')+1)

• Translation: find the second 't’.

עד כאן

24

Python String Methods

• s.count(t) - Returns the number of occurrences

of the substring t inside s.

• s.startswith(t) – Returns True if s begins

with the substring t.

• s.endswith(t) – Returns True if s ends with

the substring t.

s.count(t)

• s.count(t) returns the number of

occurences of the string t in s that do not

overlap.

• Example
>>> s = "Aiiieie!"

>>> print(s.count("ii"))

1

>>>

25

s.startswith(t)

• Returns True if s begins with the substring

t.
>>> s = \

"the rain in Spain stays mainly in the plain"

>>> print(s.startswith("the"))

True

>>>

• Using the optional second argument:
>>> print(s.startswith("in", 6))

True

>>>

s.endswith(t)

• Returns True if s begins with the substring t.

• Example
>>> s = \

"The rain in Spain stays mainly in the plain"

>>> print(s.endswith("in"))

True

>>> print (s.endswith("in", 40))

True

>>> print(s[0:41])

The rain in Spain stays mainly in the pla

>>>

26

s.endswith(t)

• If you add two optional argument they are the beginning

and end of the substring to be checked

• Example

>>> s="programming is easy to learn."

>>> print(s.endswith('learn.', 7))

True

>>> print(len(s))

29

>>> print(s.endswith('learn.', 7, 26))

False

>>> print(s[7:27])

ming is easy to lear

>>> print(s.endswith('learn.', 7, 27))

False

Python String Methods

• s.isalpha() - Returns True if all the characters

in s are letters.

• s.isdigit() - Returns True if all the characters

in s are digits.

• s.isupper() - Returns True if all the letters in s

are capital letters.

• s.islower() - Returns True if all the letters in s

are lower-case letters.

• s.istitle() – Returns True if all the words in s

begin with capital letters and the rest are lower

case.

27

s.isalpha()

• Returns True if all the characters in s are letters.

>>> s="The quick brown fox"

>>> print(s.isupper())

False

>>> print(s[0].isupper())

True

>>> s = "HELP"

>>> print(s.isupper())

True

>>> s ="ALL IS LOST"

>>> print(s.isupper())

True

>>>

s.digit()

• Returns True if all the characters in s are digits.

• Examples

>>> x = "13"

>>> print(x.isdigit())

True

>>> x = "9/13"

>>> print(x.isdigit())

False

>>>

28

s.isupper()

• Returns True if all the letters in s are capital

letters.

• Example
>>> s = "LETS GO METS"

>>> print(s.isupper())

True

>>> s = "LET'S GO, METS"

>>> print(s.isupper())

True

>>> print(s)

s.islower()

• Returns True if all the letters in s are lower-case letters.

• Examples

>>> s = "be very quiet - the baby is sleeping"

>>> print(s.islower())

True

>>> s = "be very quiet - Junior is sleeping"

>>> print(s.islower())

False

>>> print(s[0:16].islower())

True

>>>

29

s.istitle()

• Returns True if all the words in s begin with capital letters

and the rest are lower case.

• Examples

>>> s = "A Tale of Two Cities"

>>> print(s.istitle())

False

>>> s = "A Tale Of Two Cities"

>>> print(s.istitle())

True

>>>

Strings Are Immutable

• strings are immutable, that is you cannot

change one once you make it:
a_str = 'spam'

a_str[1] = '1' ERROR

• However, you can use it to make another

string (copy it, slice it, etc.)
new_str = a_str[:1] + '1' + a_str[2:]

a_str 'spam'

new_str = 'slam'

30

Python String Methods

• s.upper() - Returns a string with s’s contents in

upper case.

• s.lower() - Returns a string with s’s contents in

lower case.

• s.swapcase() - Returns a string with s’s contents

in converted from upper to lower case, and from

lower to upper case.

s.upper()

• Returns a string with s’s contents in upper

case.

• Example
>>> print(s)

a tale of two cities

>>> print(s.upper())

A TALE OF TWO CITIES

>>>

31

s.lower()

• Returns a string with s’s contents in lower

case.

• Example
>>> print(s)

A Tale Of Two Cities

>>> print(s.lower())

a tale of two cities

>>>

s.swapcase()

• Returns a string with s’s contents in

converted from upper to lower case, and

from lower to upper case.

• Example
>>> print(s)

A Tale Of Two Cities

>>> print(s.swapcase())

a tALE oF tWO cITIES

>>>

32

Python String Methods

• s.capitalize() - Returns a string with s’s

letters in lower case, except for the first character

if it is a letter.

• s.title() – Returns a string with the first letter

in s’s words in upper case, the rest in lower case.

s.capitalize()

• Returns a string with s’s letters in lower case, except for

the first character if it is a letter.

>>> print(s)

A Tale Of Two Cities

>>> print(s.capitalize())

A tale of two cities

>>> s = "-" + s

>>> print(s)

-A Tale Of Two Cities

>>> print(s.capitalize())

-a tale of two cities

33

s.title()

• Returns a string with the first letter in s’s

words in upper case, the rest in lower case.
>>> s = "a tale of TWO cities"

>>> print(s.title())

A Tale Of Two Cities

>>> s = "-a tale of two cities"

>>> print(s.title())

-A Tale Of Two Cities

>>>

Example – Detecting Palindromes

• A palindrome is a word or phrase that is the same

forward and backward

– Input: The phrase being tested

– Output: Message telling the user if it is or is not a

palindrome

• Algorithm

1. Read a phrase

2. Tell the user if it is or isn’t a palindrome

34

Refining the Algorithm

1. Read a phrase

2. Tell the user if it is or isn’t a palindrome

2.1 Strip out any non-letters

2.2 Convert it to lower case

2.3 Print whether it’s a palindrome

Refining the Algorithm

1. Read a phrase

2.1 Strip out any non-letters

2.2 Convert it to lower case

2.3 Print whether it’s a palindrome

2.1 For every character in the phrase:

2.1.1 If it is a letter

2.1.2 Copy it over into the string

35

1. Read a phrase

2.1 For every character in the phrase:

2.1.1 If it is a letter

2.1.2 Copy it over into the string

2.2 Convert it to lower case

2.3 Print whether it’s a palindrome

2.3 If the forward and reverse strings are equal

2.3.1 Print that it is a palindrome

2.3.2 Else print that it isn’t a palindrome

1. Read a phrase

2.1 For every character in the phrase:

2.1.1 If it is a letter

2.1.2 Copy it over into the string

2.2 Convert it to lower case

2.3 If the forward and reverse strings are equal

2.3.1 Print that it is a palindrome

2.3.2 Else print that it isn’t a palindrome

print("Type in a phrase. We’ll "\

+ " tell you if it's a palindrome")

phrase = input("What's your phrase?")

36

print("Type in a phrase. We’ll "\

+ " tell you if it's a palindrome")

phrase = input("What's your phrase?")

2.1 For every character in the phrase:

2.1.1 If it is a letter

2.1.2 Copy it over into the string

2.2 Convert it to lower case

2.3 If the forward and reverse strings are equal

2.3.1 Print that it is a palindrome

2.3.2 Else print that it isn’t a palindrome
newphrase = ""

for letter in phrase :

if letter.isalpha():

newphrase = newphrase + letter

print("Type in a phrase. We’ll "\

+ " tell you if it's a palindrome")

phrase = input("What's your phrase?")

newphrase = ""

for letter in phrase :

if letter.isalpha():

newphrase = newphrase + letter

2.2 Convert it to lower case

2.3 If the forward and reverse strings are equal

2.3.1 Print that it is a palindrome

2.3.2 Else print that it isn’t a palindrome

newphrase = newphrase.lower()

37

print("Type in a phrase. We’ll "\

+ " tell you if it's a palindrome")

phrase = input("What's your phrase?")

newphrase = ""

for letter in phrase :

if letter.isalpha():

newphrase = newphrase + letter

newphrase = newphrase.lower()

2.3 If the forward and reverse strings are equal

2.3.1 Print that it is a palindrome

2.3.2 Else print that it isn’t a palindrome

if newphrase == newphrase[::-1] :

print("Type in a phrase. We’ll "\

+ " tell you if it's a palindrome")

phrase = input("What's your phrase?")

newphrase = ""

for letter in phrase :

if letter.isalpha():

newphrase = newphrase + letter

newphrase = newphrase.lower()

if newphrase == newphrase[::-1] :

2.3.1 Print that it is a palindrome

2.3.2 Else print that it isn’t a palindrome

print("Your phrase, \"", phrase, "\" is a palindrome")

else :

print("Your phrase, \"", phrase, "\", is a palindrome")

38

Palindrome.py

Detect a Palindrome

Print instructions and read in a phrase

print("Type in a phrase. We'll tell you if it's

a palindrome")

phrase = input("What's your phrase?")

We copy over the phrase one letter at a time

We need to remove anything that is not a

letter

newphrase = ""

for letter in phrase :

if letter.isalpha():

newphrase = newphrase + letter

Convert it to all lower case to make it case

insensitive

newphrase = newphrase.lower()

Print a message telling the user if it is or

is not a palindrome.

if newphrase == newphrase[::-1] :

print("Your phrase, \"", phrase, \

"\" is a palindrome")

else :

print("Your phrase, \"", phrase, \

"\", is a palindrome")

39

Example: Writing Changing a Form Letter

• Let’s write a program to read a file and change

every occurrence of the name “John” to “Robert”

• Initial algorithm:

1. Instruct the user

2. Change every occurrence on each line of

“John” to “Robert

Refining the Form Letter Algorithm

1. Instruct the user

2. Change every occurrence on each line of

“John” to “Robert

2.1 Get the first line

2.2 As long as it isn’t “The End”, replace

every occurrence of John with Robert

40

Refining the Form Letter Algorithm

1. Instruct the user

2.1 Get the first line

2.2 As long as it isn’t “The End”, replace

every occurrence of John with Robert

2.2 WHILE the line ≠ “The End”

2.2.1 Replace each occurrence of “John” with Robert

2.2.2 Print the new line

2.2.3 Get the next line

Refining the Form Letter Algorithm

1. Instruct the user

2.1 Get the first line

2.2 WHILE the line ≠ “The End”

2.2.1 Replace each occurrence of “John” with Robert

2.2.2 Print the new line

2.2.3 Get the next line

outString = inString.replace("John", "Robert")

41

Refining the Form Letter Algorithm

1. Instruct the user

2.1 Get the first line

2.2 WHILE the line ≠ “The End”

outString = inString.replace("John", "Robert")

2.2.2 Print the new line

2.2.3 Get the next line

inString = input("Please begin typing. " \

+ "End by typing \'The End\'\n")

Refining the Form Letter Algorithm

inString = input("Please begin typing. " \

+ "End by typing \'The End\'\n")

2.2 WHILE the line ≠ “The End”

outString = inString.replace("John", "Robert")

2.2.2 Print the new line

2.2.3 Get the next line

while inString != "The End" :

42

Refining the Form Letter Algorithm

inString = input("Please begin typing. " \

+ "End by typing \'The End\'\n")

while inString != "The End" :

outString = inString.replace("John", "Robert")

2.2.2 Print the new line

2.2.3 Get the next line

print(outString)

Refining the Form Letter Algorithm

inString = input("Please begin typing. " \

+ "End by typing \'The End\'\n")

while inString != "The End" :

outString = inString.replace("John", "Robert")

print(outString)

2.2.3 Get the next line

inString = input("Next line?\n")

43

Example: ChangeLetter.py

Change every occurrence of "John" in the

text of a form letter to "Robert"

Prompt the user and instruct him.her how

to indicate the end of the letter

inString = input("Please begin typing. " \

+ "End by typing \'The End\'\n")

Keep changing as long as (s)he didn't

type "the end"

while inString != "The End" :

outString = inString.replace("John", \

"Robert")

print(outString)

inString = input("Next line?\n")

