
1

CSC 171 - Introduction to 

Computer Programming

Lecture #5 - Algorithms and Program 

Development

What is an Algorithm?

• Process or a set of rules to be followed in 

calculations or other problem-solving 

operations more informally a recipe for 

solving a problem.



2

Example : Square Root Algorithm

1. Guess the square root of the number

2. Divide the working number by the guess

3. Average the quotient (from 2) and the guess

4. Make the new guess the average from step 3

5. If the new guess is “sufficiently different” from 

the old guess, go back to step 2, else halt.

Algorithm vs. Program

• An algorithm is a description of how to 

solve a problem

• A program is an implementation of an 

algorithm in a particular language to run on 

a computer (usually a particular kind of 

computer)

• Difference between what we want to do 

and what we actually did



3

What’s the Difference Really?

• We can analyze the algorithm independent 

of its implementation. This is the science in 

computer science.

• We can examine how easily, or with what 

difficulty, a language allows us to realize an 

algorithm.

• We can examine how different computers 

impact the realization of an algorithm.

Aspects of an Algorithm

• Detailed - Provide enough detail to be 

implementable. Can be tricky to define 

completely, relies on “common sense”

• Effective - the algorithm should eventually halt, 

and halt in a “reasonable” amount of time. 

“reasonable” might change under different 

circumstances (faster computer, more computers, 

etc.)



4

Aspects of an Algorithm (continued)

• Specify Behavior - the algorithm should be 

specific about the information that goes in 

(quantity, type, etc.) and the information that 

comes out. 

• General Purpose - algorithms should be idealized 

and therefore general purpose. A sorting algorithm 

should be able to sort anything (numbers, letters, 

patient records, etc.)

A Lot To Do!

• That is a lot to do for the burgeoning 

programmer. 

• Get better as we go along, but good to know 

what the standards are!



5

Aspects of a Program: Readability

• We will emphasize, over and over, that a program 

is an essay on problem solving intended to be read 

by other people, even if “other people” is you in 

the future!

• Write a program so that you can read it, because it 

is likely that sometime in the future you will have 

to read it!

Readability - Naming

• The easiest thing to do that affects 

readability is good naming

– Use names for the items you create that reflect 

their purpose

– To help keep straight the types used, include that 

as part of the name. Python does not care about 

the type stored, but you do!

– Remember "lower with under"



6

Bad Code vs. Good Code – Bad Code

a = input("Give a number? ")

b, c = 1, 0

while b<=1:

c = c + b

b = b + 1

print(a, b, c)

print("Result is ", c/b-1)

Bad Code vs. Good Code – Good Code

limit_str \

= input("Range is from 1 to your input: ")

limit_int = int(limit_str)

count_int = 1

sum_int = 0

while count_int <= limit_int:

sum_int = sum_int + count_int

count_int = count_int + 1

average_float = sum_int/(count_int - 1)

print("Average of sum of integers from 1 to ", 

limit_int, " is ", average_float)



7

Readability - Comments

• Info at the top, the goal of the code

• Purpose of variables (if not obvious by the 

name)

• Purpose of other functions being used

• Anything tricky. If it took you time to 

write, it probably is hard to read and needs a 

comment

Rule 6

• If it was hard to write, it is probably hard to 

read.

• Add a comment!



8

Bad Commenting Style

#  Calculate the average of a sum of consecutive 

integers in a given range

#  Input the value

limit_str \

= input("Range is from 1 to your input:")

#  Convert the input string to an input

limit_int = int(limit_str)

#  Assign 1 to the counting variable

count_int = 1

#  Assign 0 to the sum

sum_int = 0

#  While loop runs while the counting variable is 

smaller tha nth input value

while count_int <= limit_int :

#  Add the count and the sum, reassign to sum

sum_int = sum_int + count_int

#  Add one to the count

count_int = count_int + 1

#  Calculate the average

average_float = sum_int/(count_int - 1)

#  Print the result

print("Average of sum of integers from 1 to ",\

limit_int, " is", average_float)



9

Better Commenting Style

#  Calculate the average of a sum of consecutive 

integers in a given range

#  Get the upper limit of the range

limit_str \

= input("Range is from 1 to your input:")

limit_int = int(limit_str)

#  Initialize the count and the sum

count_int = 1

sum_int = 0

#  Add up the integers from 1 to the upper limit

while count_int <= limit_int :

sum_int = sum_int + count_int

count_int = count_int + 1

#  Calculate and the average

average_float = sum_int/(count_int - 1)

print("Average of sum of integers from 1 to ", 

limit_int, " is", average_float)



10

Readability - Indenting

• Indenting is a visual cue to say what code is 

“part of” other code. 

• This is not always required as it is in 

Python, but Python forces you to indent.

• This aids readability greatly.

More Aspects of Programming 

• Robust: As much as possible, the program should 

account for inputs that are not what is expected. 

More on  this with error handling in Chapter 14

• Correct: Our programs should produce correct 

results. Much harder to ensure than it looks!



11

The Problem is “Problem-Solving”

• Remember, two parts to our goal:

– Understand the problems to be solved

– Encode the solution 

in a programming language, e.g. Python

Mix of Both

• The goal in each class is to do a little of 

both: problem solving and Python

• It is terribly important that we impress on 

you to try and understand how to solve the 

problem first before you try and code it.



12

Steps to Problem Solving

• Engage/Commit

• Visualize/See

• Try it/Experiment

• Simplify

• Analyze/Think

• Relax

Engage

• You need to commit yourself to addressing 
the problem. 

– Don’t give up easily

– Try different approaches

– Set the “mood”

• Just putting in time does not mean you put 
in a real effort!!!



13

Visualize/See the Problem

• Find a way that works for you, 

some way to make the problem tangible.

– Draw pictures

– Layout tables

– Literally “see” the problem somehow

• Everyone has a different way, find yours!

Try it/Experiment

• For some reason, people are afraid to just 

try some solution. Perhaps they fear failure, 

but experiments, done just for you, are the 

best way to figure out problems.

• Be willing to try, and fail, to solve a 

problem. Get started, don’t wait for 

enlightenment!



14

Simplify

• Simplifying the problem so you can get a 

handle on it is one of the most powerful 

problem solving tools.

• Given a hard problem, make is simplier

(smaller, clearer, easier), figure that out, 

then ramp up to the harder problem.

Think It Over/Analyze

• If your solution isn’t working:

– Stop

– Evaluate how you are doing

– Analyze and keep going, or start over.

• People can be amazingly “stiff”, banging 
their heads against the same wall over and 
over again. Loosen up, find another way!



15

One More Thing, Relax

• Take your time. Not getting an answer right 

away is not the end of the world. Put it 

away and come back to it.

• You’d be surprised how easy it is to solve if 

you let it go for awhile. That’s why starting

early is a luxury you should afford yourself.

Square Root Algorithm

1. Get a number and make an initial guess of its 

square root

2. As long as the guess isn’t close enough:

2.1  Divide the working number by the guess

2.2 Average the quotient and the guess to find

the new guess

3. This last guess is the square



16

Refining the Square Root Algorithm

1. Get a number and make an initial guess of its square root

2. As long as the guess isn’t close enough:

2.1  Divide the working number by the guess

2.2 Average the quotient and the guess to find

the new guess

3. This last guess is the square

while abs(guess_float - quotient_float) / \

guess_float > 1.0e-15 :

Refining the Square Root Algorithm

1. Get a number and make an initial guess of its square root

while abs(guess_float - quotient_float) / \

guess_float > 1.0e-15 :

2.1  Divide the working number by the guess

2.2 Average the quotient and the guess to find

the new guess

3. This last guess is the square

1.1 Read a number

1.2 Make an initial guess



17

Refining the Square Root Algorithm

1.1 Read a number

1.2 Make an initial guess

while abs(guess_float - quotient_float) / \

guess_float > 1.0e-15 :

2.1  Divide the working number by the guess

2.2 Average the quotient and the guess to find

the new guess

3. This last guess is the square

number_str = input("Enter a number")

number_float = float(number_str)

Refining the Square Root Algorithm

number_str = input("Enter a number")

number_float = float(number_str)

1.2 Make an initial guess

while abs(guess_float - quotient_float) / \

guess_float > 1.0e-15 :

2.1  Divide the working number by the guess

2.2 Average the quotient and the guess to find

the new guess

3. This last guess is the square
guess_float = 1.0

quotient_float = 100.0



18

Refining the Square Root Algorithm

number_str = input("Enter a number")

number_float = float(number_str)

guess_float = 1.0

quotient_float = 100.0

while abs(guess_float - quotient_float) / \

guess_float > 1.0e-15 :

2.1  Divide the working number by the guess

2.2 Average the quotient and the guess to find

the new guess

3. This last guess is the square

quotient_float = number_float / guess_float

Refining the Square Root Algorithm

number_str = input("Enter a number")

number_float = float(number_str)

guess_float = 1.0

quotient_float = 100.0

while abs(guess_float - quotient_float) / \

guess_float > 1.0e-15 :

quotient_float = number_float / guess_float

2.2 Average the quotient and the guess to find

the new guess

3. This last guess is the square

guess_float = 0.5*(guess_float + quotient_float)



19

Refining the Square Root Algorithm

number_str = input("Enter a number")

number_float = float(number_str)

guess_float = 1.0

quotient_float = 100.0

while abs(guess_float - quotient_float) / \

guess_float > 1.0e-15 :

quotient_float = number_float / guess_float

guess_float = 0.5*(guess_float + quotient_float)

3. This last guess is the square

print("The square root of ", number_str, " is ",\

guess_float)

SquareRoot.py

# Find the square root of a number

#  Input the number and make an initial guess

number_str = input("Enter a number")

number_float = float(number_str)

guess_float = 1.0

#  You need an initial value of the quotient for 

the loop's condition

quotient_float = 100.0



20

#  As long as there is a significant difference

#  between guess and quotient, keep dividing the

#  number by the guess and averaging the guess

#  and the quotient

while abs(guess_float - quotient_float) / \

guess_float > 1.0e-15 :

quotient_float = number_float / guess_float

guess_float \

= 0.5*(guess_float + quotient_float)

# Print the result

print("The square root of ", number_str, " is ",\

guess_float)

Reminder, Rules so Far

1. Think before you program!

2. A program is a human-readable essay on problem solving 

that also happens to execute on a computer.

3. The best way to improve your programming and problem 

solving skills is to practice!

4. A foolish consistency is the hobgoblin of little minds

5. Test your code, often and thoroughly

6. If it was hard to write, it is probably hard to read. Add a 

comment. 


