
CSC 171- Introduction to

Computer Programming

Lecture #4 - Looping Around Loops

II : Conditional Loops

The Problem with Counting Loops

• Many jobs involving the computer require
repetition, and that this can be implemented
using loops.

• Counting loops allows us to perform a
statement or a block of statements a certain
number of times.

• The problem is that we do not always know
exactly how many times to perform the
statements in a loop in every situation.

The Problem with Counting Loops (continued)

• Let’s take another look at our payroll

program:

– We do not always know how payroll records

that we have.

– It isn’t very convenient to have to count the

records, especially if it’s a big number.

– Wouldn’t it be better if we could keep going

until we enter some special value to tell the

computer to stop?

Conditional Loops

• Conditional loops allow us to do this.

• Conditional loops keep repeating as long as

some condition is true (or until some

condition becomes true).

• Steps in solving a problem that involve

while, until, as long as indicate a

conditional loop.

While Loops

• The most common form of conditional

loops are while loops.

• In Python, they have the form:
while condition :

statement(s)

A simple example – PickPositive.py

A simple example of how while works

Get your first number

number = int(input("Hi there. Pick a positive

integer"))

Keep reading number as long as they are

positive

while number > 0 :

number = int(input("Pick another positive

integer"))

print(number, " is not a positive integer")

The test average program revisited

• Let’s take another look at our program to

calculate test average:

• Write a program that can calculate a test

average and grade for any number of tests.

The program will finish when the user types

in a grade of -1.

Sentinel Value

• Often conditional loops continue until some

special value is encountered in the input

which effectively tells the program to stop

running the loop. This is called a sentinel

value because it is the value for which we

are watching.

• -1 is the sentinel value in the GPA

algorithm’s main loop

The TestAverage Algorithm

1. As long as there are more grades, add

them to the total

2. Divide the total by the number of courses

3. Print the corresponding letter grade

Refining The TestAverage Algorithm

1. As long as there are more grades, add

them to the total

2. Divide the total by the number of courses

3. Print the corresponding letter grade

1.1 Get the first grade

1.2 As long as the grade is not -1, add it to the total

and get the next grade

Refining The TestAverage Algorithm

1.1 Get the first grade

1.2 As long as the grade is not -1, add it to the total

and get the next grade

3. Divide the total by the number of courses

4. Print the corresponding letter grade

1.2.1 while the grade is not -1:

1.2.2 Add it to the total

1.2.3 Get the next grade

1.2.4 Add one to the number of tests

Refining The TestAverage Algorithm
1.1 Get the first grade

1.2.1 while the grade is not -1:

1.2.2 Add it to the total

1.2.3 Get the next tests

1.2.4 Add one to the number of courses

2. Divide the total by the number of courses

3. Print the corresponding letter grade

print("What grade did you get on your first test ?")

print("Enter -1 to end")

thisGrade = int(input ())

Refining The TestAverage Algorithm
print

("What grade did you get on your first test
?")

print("Enter -1 to end")

thisGrade = int(input ())

1.2.1 while the grade is not -1:

1.2.2 Add it to the total

1.2.3 Get the next grade

1.2.4 Add one to the number of tests

2. Divide the total by the number of courses

3. Print the corresponding letter grade

numTests = numTests + 1

Refining The TestAverage Algorithm
print

("What grade did you get on your first test
?")

print("Enter -1 to end")

thisGrade = int(input ())

1.2.1 while the grade is not -1:

1.2.2 Add it to the total

1.2.3 Get the next grade
numTests = numTests + 1

2. Divide the total by the number of courses

3. Print the corresponding letter grade

thisGrade = int(input

("What grade did you get on this test ?"))

Refining The TestAverage Algorithm
print

("What grade did you get on your first test
?")

print("Enter -1 to end")

thisGrade = int(input ())

1.2.1 while the grade is not -1:

1.2.2 Add it to the total

thisGrade = int(input

("What grade did you get on this test ?"))

numTests = numTests + 1

2. Divide the total by the number of courses

3. Print the corresponding letter grade

total = total + thisGrade

Refining The TestAverage Algorithm
print

("What grade did you get on your first test
?")

print("Enter -1 to end")

thisGrade = int(input ())

while thisGrade != sentinelGrade :

total = total + thisGrade

thisGrade = int(input

("What grade did you get on this test ?"))

numTests = numTests + 1

2. Divide the total by the number of courses

3. Print the corresponding letter grade

testAverage = total/numTests

Refining The TestAverage Algorithm
… … …

testAverage = total/numTests

3. Print the corresponding letter grade

if testAverage >= 90 :

courseGrade = 'A'

elif testAverage >= 80 :

courseGrade = 'B'

elif testAverage >= 70 :

courseGrade = 'C'

elif testAverage >= 60 :

courseGrade = 'D';

else :

courseGrade = 'F'

The TestAverage Program

Calculates the average test grade and

converts it to a letter grade assuming that

A is a 90 average, B is an 80 average and so

on.

sentinelGrade = -1

Initially the number of test is 0

numTests = 0

Initially, the total is 0

total = 0

Get the first grade

print("What grade did you get on your first test ?")

print("Enter -1 to end")

thisGrade = int(input ())

Add up the test grades

while thisGrade != sentinelGrade :

Make sure that the grades are valid percentages

total = total + thisGrade

numTests = numTests + 1

thisGrade = int(input("What grade did you get on this

test ?"))

Find the average

testAverage = total/numTests

Find the letter grade corresponding to the average

if testAverage >= 90 :

courseGrade = 'A'

elif testAverage >= 80 :

courseGrade = 'B'

elif testAverage >= 70 :

courseGrade = 'C'

elif testAverage >= 60 :

courseGrade = 'D';

else :

courseGrade = 'F'

Print the results

print("Your test average is ", testAverage)

print("Your grade will be ", courseGrade);

Payroll program revisited

• Let’s revisit the payroll program.

• Instead of counting up the payroll records
so we can count the number of times we go
through the loop, why not use some sentinel
value in the last entry to tell the program
when we’re finished?

• Since no one will ever make $0.00 per hour,
we’ll use a pay rate of 0 as our sentinel
value in the revised payroll program.

Our Initial Payroll Algorithm

1. Display instructions for the user

2. Keep processing payroll records as long as there

are more.

Refining the Payroll Algorithm

1. Display instructions for the user

2. Keep processing payroll records as long as there

are more.

2.1 Get the first pay rate

2.2 while The Rate is positive:

2.3 Process payroll record

2.4 Get the next pay rate

2.5 Print final count

Refining the Payroll Algorithm

1. Display instructions for the user

2.1 Get the first pay rate

2.2 while The Rate is positive:

2.3 Process payroll record

2.4 Get the next pay rate

2.5 Print final count

while rate > 0.0 :

Refining the Payroll Algorithm

1. Display instructions for the user

2.1 Get the first pay rate

2.2 while rate > 0.0 :

2.3 Process payroll record
2.4 Get the next pay rate

2.5 Print final count

2.3.1 Calculate gross pay

2.3.2 Print gross pay

2.3.3 Increment record count

Refining the Payroll Algorithm

1. Display instructions for the user

2.1 Get the first pay rate

while rate > 0.0 :

2.3.1 Calculate gross pay

2.3.2 Print gross pay

2.3.3 Increment record count
2.4 Get the next pay rate

2.5 Print final count

2.3.1.1 Get hours worked

2.3.1.2 Calculate gross pay

Refining the Payroll Algorithm

1. Display instructions for the user

2.1 Get the first pay rate

while rate > 0.0 :

2.3.1.1 Get hours worked

2.3.1.2 Calculate gross pay

2.3.2 Print gross pay

2.3.3 Increment record count
2.4 Get the next pay rate

2.5 Print final count

hours = float(input

("Enter the hours worked ?"))

Refining the Payroll Algorithm

1. Display instructions for the user

2.1 Get the first pay rate
while rate > 0.0 :

hours = float(input

("Enter the hours worked ?"))

2.3.1.2 Calculate gross pay

2.3.2 Print gross pay

2.3.3 Increment record count
2.4 Get the next pay rate

2.5 Print final count

if hours > 40 :

pay = 40*rate + 1.5*rate*(hours-40)

else :

pay = rate * hours

Refining the Payroll Algorithm

1. Display instructions for the user

2.1 Get the first pay rate
while rate > 0.0 :

hours = float(input

("Enter the hours worked ?"))

if hours > 40 :

pay = 40*rate + 1.5*rate*(hours-40)

else :

pay = rate * hours

2.3.2 Print gross pay

2.3.3 Increment record count

2.4 Get the next pay rate

2.5 Print final count

print("Gross pay is $%4.2f\n\n" %(pay))

Refining the Payroll Algorithm

1. Display instructions for the user

2.1 Get the first pay rate
while rate > 0.0 :

hours = float(input

("Enter the hours worked ?"))

if hours > 40 :

pay = 40*rate + 1.5*rate*(hours-40)

else :

pay = rate * hours

print("Gross pay is $%4.2f\n\n" %(pay))

2.3.3 Increment record count

2.4 Get the next pay rate

2.5 Print final count

numPeople = numPeople + 1

Refining the Payroll Algorithm

1. Display instructions for the user

2.1 Get the first pay rate
while rate > 0.0 :

hours = float(input

("Enter the hours worked ?"))

if hours > 40 :

pay = 40*rate + 1.5*rate*(hours-40)

else :

pay = rate * hours

print("Gross pay is $%4.2f\n\n" %(pay))

numPeople = numPeople + 1

2.4 Get the next pay rate

2.5 Print final count

rate = float(input

("What is the pay rate for the next employee ? "))

Refining the Payroll Algorithm

1. Display instructions for the user

2.1 Get the first pay rate
while rate > 0.0 :

hours = float(input

("Enter the hours worked ?"))

if hours > 40 :

pay = 40*rate + 1.5*rate*(hours-40)

else :

pay = rate * hours

print("Gross pay is $%4.2f\n\n" %(pay))

numPeople = numPeople + 1

rate = float(input

("What is the pay rate for the next employee ? "))

2.5 Print final count

Refining the Payroll Algorithm

1. Display instructions for the user

2.1 Get the first pay rate
while rate > 0.0 :

… …

rate = float(input

("What is the pay rate for the next employee ? "))

2.5 Print final count

numPeople = 0

Display instructions

print("To stop the program, enter a pay rate",

" of zero or less \n\n")

Refining the Payroll Algorithm

numPeople = 0

Display instructions

print("To stop the program, enter a pay rate",

" of zero or less \n\n")

2.1 Get the first pay rate
while rate > 0.0 :

… …

rate = float(input

("What is the pay rate for the next employee ? "))

2.5 Print final count

rate = float(input(

"What is rate of pay for the employee ? "))

Refining the Payroll Algorithm

numPeople = 0

Display instructions

print("To stop the program, enter a pay rate",

" of zero or less \n\n")

rate = float(input(

"What is rate of pay for the employee ? "))

while rate > 0.0 :

… …

rate = float(input

("What is the pay rate for the next employee ? "))

2.5 Print final count

print("There were ", numPeople, " payroll records.")

print("Payroll is finished.")

The Payroll Program

Processes a payroll for a given number of

employees. The user indicates that (s)he is

finished by entering a pay rate that is zero

or negative.

numPeople = 0

Display instructions

print("To stop the program, enter a pay rate",

" of zero or less \n\n")

Ask the user for the first employee’s

pay rate

rate = float(input

("What is rate of pay for the employee ? "))

Calculate gross salary for everyone on the

payroll

while rate > 0.0 :

Enter the hours worked

hours = float(input("Enter the hours worked ?"))

Calculate and print the pay.

If hours exceed 40, pay time and a half

if hours > 40 :

pay = 40*rate + 1.5*rate*(hours-40)

else :

pay = rate * hours

print("Gross pay is $%4.2f\n\n" %(pay))

numPeople = numPeople + 1

Compound Interest program

revisited

• Our earlier program showed how much

interest is compounded over a given number

of years.

• Let’s see how long your money would have

to earn interest to reach a million dollars

Redesigning Our Compound Interest Program

Input – Input deposit

Output – The final year and exact balance

Other information

New Principle = (1 + Interest Rate) * Old Principle

Initial Algorithm:

• Set the initial principle at $24

• For every year since 1625, add 5% interest to the principle
until the principle reaches $1,000,000 and print the
principle every twenty years and when it reaches $1
million

• Print the values for the final year

Refining The Compound Interest Algorithm

1. Set the initial principle at $24

2. For every year since 1625, add 5% interest to the

principle until the principle reaches $1,000,000

and print the principle every twenty years and

when it reaches $1 million

3. Print the values for the final year

2.1 Set Year to 1625

2.2 While Principle < $1,000,000

2.3 Add 5% Interest to the Principle

2.4 If the Year % 20 = 5

2.5 then print the principle

Refining The Compound Interest Algorithm

1. Set the initial principle at $24

2. For every year since 1625, add 5% interest to the

principle until the principle reaches $1,000,000

and print the principle every twenty years and

when it reaches $1 million

3. Print the values for the final year

2.1 Set Year to 1625

2.2 While Principle < $1,000,000

2.3 Add 5% Interest to the Principle

2.4 If the Year % 20 = 5

2.5 then print the principle

Refining The Compound Interest Algorithm

1. Set the initial principle at $24

2.1 Set Year to 1625

2.2 While Principle < $1,000,000

2.3 Add 5% Interest to the Principle

2.4 If the Year % 20 = 5

2.5 then print the principle

3. Print the values for the final year

while principle < target :

Refining The Compound Interest Algorithm

1. Set the initial principle at $24
2.1 Set Year to 1625

while principle < target :

2.3 Add 5% Interest to the Principle
2.4 If the Year % 20 = 5
2.5 then print the principle

3. Print the values for the final year

interest = rate * principle;

principle = principle + interest;

Refining The Compound Interest Algorithm

1. Set the initial principle at $24

2.1 Set Year to 1625
while principle < target :

interest = rate * principle;

principle = principle + interest;

2.4 If the Year % 20 = 5
2.5 then print the principle

3. Print the values for the final year

if year % 20 == 5 :

print(

"year = %4d\tinterest = %13.2f\tprinciple = %15.2f\n"

%(year, interest, principle))

Refining The Compound Interest Algorithm

1. Set the initial principle at $24

2.1 Set Year to 1625
while principle < target :

interest = rate * principle;

principle = principle + interest;

if year % 20 == 5 :

print(

"year = %4d\tinterest = %13.2f\tprinciple = %15.2f\n"

%(year, interest, principle))

3. Print the values for the final year

print(

"year = %4d\tinterest = %13.2f\tprinciple = %15.2f\n"

%(year, interest, principle))

Refining The Compound Interest Algorithm

1. Set the initial principle at $24

2.1 Set Year to 1625
… …

print(

"year = %4d\tinterest = %13.2f\tprinciple = %15.2f\n"

%(year, interest, principle))

principle = 24

Refining The Compound Interest Algorithm

principle = 24

2.1 Set Year to 1625
… …

print(

"year = %4d\tinterest = %13.2f\tprinciple = %15.2f\n"

%(year, interest, principle))

Year = 1625

The Revised Compound Interest Program

Calculate the interest that the Canarsie Indians

could have accrued if they had deposited the $24

in an bank account at 5% interest.

year = 1625

rate = 0.05

target = 1000000

Set the initial principle at $24

principle = 24

For every year since 1625, add 5% interest

to the principle until the principle

reaches $1,000,000

Print the principle every twenty years

and when it reaches $1 million

There has to be two fixed places for the

principle

interest = 0

while principle < target :

interest = rate * principle

principle = principle + interest

if year % 20 == 5 :

Use 15 places for printing the principle

print(

"year = %4d\tinterest = %13.2f\tprinciple = %15.2f\n"

%(year, interest, principle))

year = year + 1

Print the values for the final year

print(

"year = %4d\tinterest = %13.2f\tprinciple = %15.2f\n"

%(year, interest, principle))

Magic Number Problem

• The magic number game involves guessing
a number and with each wrong guess, the
player is told “too high” or “ too low”. The
goal is to guess the number in the smallest
number of tries.

• We need a method for having the computer
pick a number at random for the player to
guess.

• We will need to learn about how to use
“library functions” to provide us with the
magic number.

Designing the Magic Number Algorithm

Input – The player’s guess(es)

Output – A clue (“too high” or “too low”) and the number of

guesses that it took.

Initial Algorithm

1. Use the random number function to pick a number

• Let the player make a guess

• As long as the player hasn’t guessed the number, give

the appropriate clue and let him/her guess again.

• Print the number of tries

Refining the Magic Number Algorithm

1. 1. Use the random number function to pick a number

2. Let the player make a guess

3. As long as the player hasn’t guessed the number, give

the appropriate clue and let him/her guess again.

4. Print the number of tries

3.1 While the guess isn’t the magic number:

3.2 Give the appropriate clue

3.3 Increment the count of tries

3.4 Let the player make another guess.

Refining the Magic Number Algorithm

1. Use the random number function to pick a number

2. Let the player make a guess

3.1 While the guess isn’t the magic number:

3.2 Give the appropriate clue

3.3 Increment the count of tries

3.4 Let the player make another guess.

4. Print the number of tries

3.2.1 If the number is too high, say so..

3.2.2 Else say that the number is too low.

Refining the Magic Number Algorithm

1. Use the random number function to pick a number

2. Let the player make a guess
3.1 While the guess isn’t the magic number:
3.2.1 If the number is too high, say so..
3.2.2 Else say that the number is too low.
3.3 Increment the count of tries
3.4 Let the player make another guess.

4. Print the number of tries

while guess != magic :

1. Use the random number function to pick a number

2. Let the player make a guess
while guess != magic :

3.2.1 If the number is too high, say so..

3.2.2 Else say that the number is too low.

3.3 Increment the count of tries

3.4 Let the player make another guess.

4. Print the number of tries

if guess > magic :

print(".. Wrong .. Too high\n")

else :

print(".. Wrong .. Too low\n")

1. Use the random number function to pick a number

2. Let the player make a guess
while guess != magic :

if guess > magic :

print(".. Wrong .. Too high\n")

else :

print(".. Wrong .. Too low\n")

Let the user make another guess

guess = int(input("Guess ?"))

3.3 Increment the count of tries

3.4 Let the player make another guess.

4. Print the number of tries
tries = tries + 1

1. Use the random number function to pick a number

2. Let the player make a guess
while guess != magic :

if guess > magic :

print(".. Wrong .. Too high\n")

else :

print(".. Wrong .. Too low\n")

Let the user make another guess

guess = int(input("Guess ?"))

tries = tries + 1

3.4 Let the player make another guess.

4. Print the number of tries

guess = int(input("Guess ?"))

1. Use the random number function to pick a number

2. Let the player make a guess
while guess != magic :

if guess > magic :

print(".. Wrong .. Too high\n")

else :

print(".. Wrong .. Too low\n")

Let the user make another guess

guess = int(input("Guess ?"))

tries = tries + 1

guess = int(input("Guess ?"))

4. Print the number of tries

print("** Right!! ** ")

print(magic, " is the magic number\n");

Tell the user how many guesses it took

print("You took ", tries, " guesses\n");

1. Use the random number function to pick a number

2. Let the player make a guess
while guess != magic :

if guess > magic :

print(".. Wrong .. Too high\n")

else :

print(".. Wrong .. Too low\n")

Let the user make another guess

guess = int(input("Guess ?"))

tries = tries + 1

print("** Right!! ** ")

print(magic, " is the magic number\n");

print("You took ", tries, " guesses\n");

guess = int(input("Guess ?"))

import and Python Modules

• It is frequently helpful to be able to use software
routines that have already been written for
common tasks.

• A library is a collection of code that someone else
wrote and translated.

• A standard library is a library that is part of the
language. Standard libraries are expected to be
included with a Python system.

• Python’s standard libraries are organized into
modules. Each of these must be imported before
its components can be used in a program.

import and the Random Module

• To use the random number function, we need to include

import random

• This tells the computer it needs to use the random module.

• A module will include data types and procedures that we
will need to use. We make it available by writingimport
random

at the beginning of the program

• The name of the random number function that we want is
randint(start, finish) – it will provide a
random integer value in the range start to finish.

• In our program, the range will be 1 to 100.

The Magic Number Program

import random

The magic number game has the user trying to

guess which number between 1 and 100 the

computer has picked

tries = 1;

Use the random number function to pick a

number

magic = random.randint(1, 100)

Let the user make a guess

guess = int(input("Guess ?"))

while guess != magic :

Otherwise tell him whether it's too high

or too low

if guess > magic :

print(".. Wrong .. Too high\n")

else :

print(".. Wrong .. Too low\n")

Let the user make another guess

guess = int(input("Guess ?"))

tries = tries + 1

If the user won, tell him/her

print("** Right!! ** ")

print(magic, " is the magic number\n");

Tell the user how many guesses it took

print("You took ", tries, " guesses\n");

Declaring Boolean Constants

• If we want to work with true and false we

can work with boolean variables.

• We can write:
boolean married = true;

… … … …

if (married)

System.out.println("The employee is

married\n");

not operator

• Sometimes we want to test to see if a
condition is not true.

• We can do this by using the not operator:
if not married :

print("Do you want to bring a date?")

and and or Operators

• Sometimes there may be two or more conditions

to consider.For this reason we have the and and

or operators.

• If we have two variables, p, q :

– Both p and q must be true for p and q to be true.

– p or q is true unless both p and q are false.

Nim

• The game Nim starts out with seven sticks

on the table.

• Each player takes turns picking up 1, 2 or 3

sticks and cannot pass.

• Whoever picks up the last stick loses (the

other player wins).

The Nim Problem

• Input

– The number of sticks the player is picking up

• Output

– The number of sticks on the table

– Who won (the player or the computer)

• Other Information

– Whoever leaves 5 sticks for the other player can always

win if they make the right followup move:

• If the other player takes 1, you pick up 3

• If the other player takes 2, you pick up 2

• If the other player takes 3, you pick up 1

Designing The Nim Algorithm

1.Print the instructions

2.Set the number of stick at 7 and initialize

other values

3.Find out if the user wants to go first or

second

4.If the user goes second, have the computer

take two sticks and the user goes second,

have the computer take two sticks.

5.As long as there is no winner, keep playing

1. Print the instructions

2. Set the number of stick at 7 and initialize other values

3. Find out if the user wants to go first or second

4. If the user goes second, have the computer take two sticks

and the user goes second, have the computer take two

sticks.

5. As long as there is no winner, keep playing

5.1 While there is no winner

5.2 Find out how many sticks the user is taking

5.3 Make sure it’s a valid choice

5.4 Pick up the appropriate number of sticks.

5.5 Take the sticks off the table

5.6 See if there is a winner

1. Print the instructions

2. Set the number of stick at 7 and initialize other values

3. Find out if the user wants to go first or second

4. If the user goes second, have the computer take two sticks and the user

goes second, have the computer take two sticks.

5.1While there is no winner

5.2 Find out how many sticks the user is taking

5.3 Make sure it’s a valid choice

5.4 Pick up the appropriate number of sticks.

5.5 Take the sticks off the table

5.6 See if there is a winner

5.3.1 Make sure the user picked 1, 2, or 3 sticks

5.3.2 Make sure that user didn’t take more sticks than are

on the table

… … … …

5.1While there is no winner

5.2 Find out how many sticks the user is taking

5.3.1 Make sure the user picked 1, 2, or 3 sticks

5.3.2 Make sure that user didn’t take more sticks than are on the table

5.3 Make sure it’s a valid choice

5.4 Pick up the appropriate number of sticks.

5.5 Take the sticks off the table

5.6 See if there is a winner

if sticksLeft == 6 or sticksLeft == 5 or sticksLeft ==2 :

reply = 1

elif sticksLeft == 4 :

reply = 3;

elif sticksLeft == 3 :

reply = 2

… … … …

5.1While there is no winner

… … … …

if sticksLeft == 6 or sticksLeft == 5 \

or sticksLeft ==2 :

reply = 1

… … … …

5.5 Take the sticks off the table

5.6 See if there is a winner

elif sticksLeft == 1 : {

print("Congratulations! You won!")

winner = True

elif sticksLeft == 0 : {

print(" Sorry, the computer has won ", \

"- you have lost...")

winner = True

}

checking for valid input

• Very often, people will enter data that is not

valid.

• An example of this is a negative number of

hours worked, a name that contains

numbers, a ten-digit zip code, etc.

• It is very important to learn how to check

for bad data and what to do when you

encounter it.

… … … …

5.1While there is no winner

5.2 … … … …

5.3 Make sure it’s a valid choice

if sticksLeft == 6 or sticksLeft == 5

or sticksLeft == 2 :

reply = 1

… … … …

else if sticksLeft == 0 :

… … … …

5.5 Take the sticks off the table

5.3.1 Make sure the user picked 1, 2, or 3 sticks

5.3.2 Make sure that user didn’t take more sticks than are on the table

The Nim Program

A program for the class game of Nim

Print the instructions

print("There are seven (7) sticks on the table.")

print("Each player can pick up one, two , or ")

print ("three sticks in a given turn. A player")

print("cannot pick up more than three stick nor")

print("can a player pass.\n")

Initialize values

sticksLeft = 7

pickUp = 0

reply = 0

winner = False

answer = " "

Find out if the user wants to go

first or second

while answer != 'f' and answer != 'F' \

and answer != 's' and answer != 'S' :

answer = input("Do you wish to go " +

"(f)irst or (s)econd ?")

answer = answer[0]

If the user goes second, have the computer

take two sticks.

if answer == 's' or answer == 'S' :

reply = 2

sticksLeft = sticksLeft - reply

print("The computer took ", reply, \

" sticks leaving ", sticksLeft, on the table.")

If the user goes first, tell him how many

sticks are on the table

else :

print("There are ", sticksLeft, " on the table.")

As long as there is no winner, keep playing

while not winner :

move = False

How many sticks is the user taking

while not move :

pickUp = int(input("How many sticks do "

+ "you wish to pick up ?"))

Make sure its 1, 2 or 3

if pickUp < 1 or pickUp > 3 :

println(pickUp, \

" is not a legal number of sticks")

Make sure that there are

enough sticks on the table

elif pickUp > sticksLeft :

println("There are not ", pickUp, \

" sticks on the table")

else:

move = True

Take the sticks off the table

sticksLeft = sticksLeft - pickUp

Plan the computer's next move

if sticksLeft == 6 or sticksLeft == 5 \

or sticksLeft == 2 :

reply = 1

elif sticksLeft == 4 :

reply = 3

elif sticksLeft == 3 :

reply = 2

See if the user won

elif sticksLeft == 1 :

print("Congratulations! You won!")

winner = True

See if the user lost

elif sticksLeft == 0 :

print("Sorry, the computer has won " \

+ "- you have lost...")

winner = True

If neither happened,

get ready for the next move

if not winner :

sticksLeft = sticksLeft - reply

print("The computer picked up ", reply, \

" sticks.")

print("There are now ", sticksLeft, \

" sticks left on the table.\n\n\n")

