
1

Introduction to Computer Programming

Lecture #3 - Looping Around Loops

I: Counting Loops

Why loops?

• Computers offer several advantages over
calculators.

• If it is necessary, they can perform the same
steps over and over again, simply by
rerunning the program.

• But is this the only way to get a computer to
perform the same action repeatedly? And is
this the only reason for getting a computer
to repeat itself?

2

Example : Average of three numbers

• Let’s take another look at our program that finds the
average of three numbers:

value1 = input("What is the first value?")

value1 = int(value1)

value2 = input("What is the second value?")

value2 = int(value2)

value3 = input("What is the third value?")

value3 = int(value3)

sum = value1 + value2 + value3

average = sum / 3

print("The average is ", average)

Example : Average of three numbers

(continued)

• What would we do if we wanted the program to

average 5 values instead of 3? or 10? or 100?

• This is clearly not the best way to write this!

3

Loops

• We need the ability to perform the same set

of instructions repeatedly so we don’t have

to write them over and over again.

• This is why Python includes a few ways of

using repetition in a program.

• Each case where we repeat a set of

statement is called a loop.

Counting Loops

• The first type of loop is a counting loop.

• Counting loops are repeated a specific

number of times.

• If you read the loop, you can easily figure

out how many times its statements will be

performed.

4

Example: Hello Again

• Example - Write a program that greets the user with "Hi
there!" five times.

• We could write the program like this:
Hello again - this program writes

"Hello, again" five times

print("Hello, again")

print("Hello, again")

print("Hello, again")

print("Hello, again")

print("Hello, again")

Counting Loops

• We use a for loop to write basic counting loops

• In Python, it looks like this:
for count in range(size) :

statements

• or

for count in range(start, size) :

statements

• or

for count in range(start, size, increment) :

statements

• or

for count in range(size, increment) :

statements

5

Counting Loops (continued)

for count in range(start, size, increment) :

statement(s)

variable used to count

times through the loop

initial value

of the counter

number of

loops

increment

of the

counter

for Loops - Examples

for i in range(3) :

print(i, " ", end="")

print()

for i in range(1, 3) :

print(i, " ", end="")

print()

for i in range(1, 6, 2) :

print(i, " ", end="")

print()

Output

0 1 2

1 2

1 3 5

6

Example: Rewriting HelloAgain

• Let's write the steps that our new version of

that program must perform:

1.Write "Hi, there!" on the screen 5 times.

1. FOR i goes from 1 TO 5

1.1 Write “Hi, there!”

Refining HelloAgain

1. FOR i goes from 1 TO 5

1.1 Write “Hi, there!”

for i in range(5) :

7

Refining HelloAgain

for i in range(5) :

1.1 Write “Hi, there!”

print("Hello, again")

The New HelloAgain

HelloAgain2 - This is a better way to write

"Hello, again" five times

for i in range(5) :

print("Hello, again")

8

Generalizing HelloAgain

• This program is also flawed; it gives us no choices

as to how many times we can print “Hi, there!”

• We can to let the user select how many times to

print the message and making this version of the

program more general is fairly easy:

• Our algorithm will start as:

1. Find out how many time to print the message.

2. Print "Hi, there!" that many times.

Generalizing HelloAgain (continued)

1. Find out how many time to print the message.

2. Print "Hi, there!" that many times.

totalTimes = int(input

("How many times do you want to say \"hello\"?"))

9

Generalizing HelloAgain (continued)

totalTimes = int(input

("How many times do you want to say \"hello\"?"))

2. Print "Hi, there!" that many times.

print("Hello, again")

The Revised HelloAgain

HelloAgain3 - Write "Hello, again" as many times

as the user wants

totalTimes = int(input

("How many times do you want to say \"hello\"?"))

for count in range(totalTimes) :

print("Hello, again")}

10

Example: Averaging n Numbers

• Let's get back to our original problem. We

want to able to average any number of

values.

• Let's start by outlining our algorithm:

1. Find out how many values there are.

2. Add up all the values.

3. Divide by the number of values

4. Print the result

Refining Avgn

1. Find out how many values there are.

2. Add up all the values.

3. Divide by the number of values

4. Print the result

numValues = int(input

("How many values are you going to enter?"))

11

Refining Avgn

numValues = int(input

("How many values are you going to enter?"))

2.Add up all the values.

3.Divide by the number of values

4.Print the result

2.1 For CurrentValue goes from 1 to NumValues :

2.1.1 Get the next value

2.1.2 Add it to the total

Refining Avgn

numValues = int(input

("How many values are you going to enter?"))

2.1 For CurrentValue goes from 1 to NumValues :

2.1.1 Get the next value

2.1.2 Add it to the total

3.Divide by the number of values

4.Print the result

2.0 Set the total to zero (initially there are no values)

12

Refining Avgn

numValues = int(input

("How many values are you going to enter?"))

2.0 Set the total to zero (initially there are no values)

2.1 For CurrentValue goes from 1 to NumValues :

2.1.1 Get the next value

2.1.2 Add it to the total

3. Divide by the number of values

4. Print the result

sum = 0.0;

for currentValue in range(numValues) :

value = float(input

("What is the next value?"))

sum = sum + value

Refining Avgn

numValues = int(input

("How many values are you going to enter?"))

sum = 0.0;

for currentValue in range(numValues) :

value = float(input

("What is the next value?"))

sum = sum + value

3. Divide by the number of values

4. Print the result

average = sum / numValues

print("The average is ", average)

13

The AverageN Program

AverageN - Find the average of N values

Find out how many values there are

numValues = int(input

("How many values are you going to enter?"))

Read in each value and add it to the sum

sum = 0.0;

for currentValue in range(numValues) :

value = float(input("What is the next value?"))

sum = sum + value

Calculate and print out the average

average = sum / numValues

print("The average is ", average)

Formatting float output in C++

• cout and cin are examples of what are

called stream input/output.

• Stream I/O uses a set of built-in values

called format flags to determine how data is

printed. We can changes these values by
using setf(). For now, we will use it

only to reformat float values.

14

Example: Interest Program

• Example - Write a program that calculates the
interest that the Canarsie Indians would have
accumulated if they had put the $24 that they had
received for Manhattan Island in the bank at 5%
interest.

Input - none; all the values are fixed

Output - Year and Principle

Other Information -

Principle is initially 24

Interest = Interest Rate * Principle

New Principle = Old Principle + Interest

Example: Interest Program

• Our initial algorithm is:

1. Set the principle to 24

2. For every year since 1625, add 5% interest to

the principle and print out the principle.

15

Refining The Interest Algorithm

1. Set the principle to 24

2. For every year since 1625, add 5% interest to

the principle and print out the principle.

2.1 FOR Year goes from 1625 TO Present:

2.1.1 Add 5% interest to the principle

2.1.2 Print the current principle

Refining The Interest Algorithm

1. Set the principle to 24

2.1 FOR Year goes from 1625 TO Present:

2.1.1 Add 5% interest to the principle

2.1.2 Print the current principle

2.1.1.1 Calculate 5% Interest

2.1.1.2 Add the interest to the principle

16

Refining The Interest Algorithm

1. Set the principle to 24

2.1 FOR Year goes from 1625 TO Present:

2.1.1.1 Calculate 5% Interest

2.1.1.2 Add the interest to the principle

2.1.2 Print the current principle

principle = 24

Refining The Interest Algorithm

principle = 24;

2.1 FOR Year goes from 1625 TO Present:

2.1.1.1 Calculate 5% Interest

2.1.1.2 Add the interest to the principle

2.1.2 Print the current principle

for year in range(1625, present) :

17

Refining The Interest Algorithm

principle = 24;

for year in range(1625, present) :

2.1.1.1 Calculate 5% Interest

2.1.1.2 Add the interest to the principle

2.1.2 Print the current principle

interest = rate * principle

principle = principle + interest

Refining The Interest Algorithm

principle = 24;

for year in range(1625, present) :

interest = rate * principle

principle = principle + interest

2.1.2 Print the current principle

print("year = ", year, "\tprinciple = ",

principle)

18

The Interest Program

Calculate the interest that the Canarsie

Indians could have accrued if they had

deposited the $24 in an bank account at

5% interest.

present = 2015

rate = 0.05;

Set the initial principle at $24

principle = 24

for every year since 1625, add 5% interest

to the principle and print out

the principle

for year in range(1625, present) :

interest = rate * principle

principle = principle + interest

print("year = ", year, "\tprinciple = ",

principle)

19

Output from the Compound Interest Program

•What will our output look like?
year = 1625 principle = 25.2

year = 1626 principle = 26.46

year = 1627 principle = 27.783

year = 1628 principle = 29.172150000000002

… … … … …

year = 2010 principle = 3624771902.2233915

year = 2011 principle = 3806010497.3345613

year = 2012 principle = 3996311022.201289

year = 2013 principle = 4196126573.3113537

year = 2014 principle = 4405932901.976921

•This does not look the way we expect monetary

amounts to be written!

Formatted Output With print()

• The method print() gives us a way to write

output that is formatted, i.e., we can control its

appearance.

• We write:
print(ControlString, %(Arg1, Arg2, ...))

• The control string is a template for our output,

complete with the text that will appear along with

whatever values we are printing.

20

Special Characters

• There are a number of special characters

that all begin with a backslash:

– \n new line

– \b backspace

– \t tab

• These can appear anywhere with a string of

characters:
print("This is a test\nIt is!!\n")

%d and %f

• The specifiers %d and %f allow a programmer to

specify how many spaces a number will occupy

and (in the case of float values) how many

decimal places will be used.

• %nd will use at least n spaces to display the

integer value in decimal (base 10) format.

• %w.df will use at least w spaces to display the

value and will have exactly d decimal places.

21

Changing the width

```-182%7d-182

`-182%5d-182

-182%4d-182

``182%7d182

``182%5d182

182%3d182

182%2d182

Print as:FormattingNumber

Changing the width (continued)

…..11023%10d-11023

-11023%6d-11023

.11023%6d11023

11023%4d11023

……23%8d23

….23%6d23

23%2d23

23%1d23

Print as:FormattingNumber



22

Changing The Precision

Number Formatting Prints as:

2.718281828 %8.5f `2.71828

2.718281828 %8.3f ```2.718

2.718281828 %8.2f ````2.72

2.718281828 %8.0f ````````3

2.718281828 %13.11f 2.71828182800

2.718281828 %13.12f 2.718281828000

The revised Compound program

#    Calculate the interest that the Canarsie 

#    Indians could have accrued if they had 

#    deposited the $24 in an bank account at

#    5% interest. 

present = 2015

rate = 0.05;

#  Set the initial principle at $24

principle = 24;

#  For every year since 1625, add 5% interest

#  to the principle and print out

#  the principle



23

for  year in range(1625, present) : 

interest = rate * principle;

principle = principle + interest;

print("year = %4d\tprinciple = $%13.2f"

%(year, principle))

The output from the Revised Compound 

Program

Our output now looks like this:
year = 1625 principle = $        25.20

year = 1626 principle = $        26.46

year = 1627 principle = $        27.78

year = 1628 principle = $        29.17

… … … … … … … … … … … … … … … 

year = 2010 principle = $3624771902.22

year = 2011 principle = $3806010497.33

year = 2012 principle = $3996311022.20

year = 2013 principle = $4196126573.31

year = 2014 principle = $4405932901.98



24

Integer Division

• Our compound interest program prints the 

values for every year where every ten or 

twenty years would be good enough.

• What we really want to print the results 

only if the year is ends  in a 5. (The 

remainder from division by 10 is 5).

Integer Division (continued)

• There are two types of division where the 

dividend and divisor are both integers.

• Floor by an integer produces an integer 

quotient, which is the largest integer smaller 

than the quotient:

5//3 = 1R2 16//3 = 5R1

6//2 = 3R0 15//4 = 3R3

quotient remainder



25

#  A few examples of integer division using

#  // and %

print("8 / 3 = ", 8 / 3 )

print("8 // 3 = ", 8 // 3 )

print("8 % 3 = ", 8 % 3 )

print("2 / 3 = ", 2 / 3 )

print("2 // 3 = ", 2 // 3 )

print("2 % 3 = ", 2 % 3 )

print("49 // 3 = ", 49 // 3 )

print("49 % 3 = ", 49 % 3 )

print("49 // 7 = ", 49 // 7 )

print("49 % 7 = ", 49 % 7 )

print("-8 // 3 = ", -8 // 3 )

print("-8 % 3 = ", -8 % 3 )

print("-2 // 3 = ",  -2 // 3 )

print("-2 % 3 = ",  -2 % 3 )

print("-2 // -3 = ",  -2 // -3 )

print("-2 % -3 = ",  -2 % -3 )

print("2 // -3 = ",  2 // -3 )

print("2 % -3 = ",  2 % -3 )

print("-49 // 3 = ",  -49 // 3 )

print("-49 % 3 = ",  -49 % 3 )

print("-49 // -3 = ", -49 // -3 )

print("-49 % -3 = ", -49 % -3 )

print("49 // -3 = ",  49 // -3 )

print("49 % -3 = ",  49 % -3 )



26

print("-49 // 7 = ",  -49 // 7 )

print("-49 % 7 = ",  -49 % 7 )

print("-49 // -7 = ",  -49 // -7 )

print("-49 % -7 = ",  -49 % -7 )

print("49 // -7 = ",  49 // -7 )

print("49 % -7 = ",  49 % -7 )

Integer Division Results

-49 % 3 = -1-49 //3 = -16

2 %-3 = 22 // -3 = 0

-2 % -3 = -2-2 // -3 = 0

-2 % 3 = -2-2 // 3 = 0

-8 % 3 = -2-8 // 3 = -2

49 % 7 = 049 // 7 = 7

49 % 3 = 149 // 3 = 16

2 % 3 = 22 // 3 = 0

8 % 3 = 28 // 3 = 2



27

Integer Division Results (continued)

-49 % 7 = 0-49 // 7 = -7

49 % -3 = 149 // -3 = -16

-49 % -3 = -1-49 // -3 = 16

Final Compound Interest Program

#  Calculate the interest that the Canarsie 

#  Indians could have accrued if they had 

#  deposited the $24 in an bank account at

#  5% interest. 

present = 2015;

rate = 0.05;

#  Set the initial principle at $24

principle = 24;

#  For every year since 1625, add 5% interest

#  to the principle and print out 

#  the principle    

for  year in range(1625, present) :

interest = rate * principle

principle = principle + interest



28

#  Print the principle for every 20th year

if year % 20 == 5 :

print("year = %4d\tprinciple = $%13.2f"

%(year, principle))

#  Print the values for the last year

print("year = %4d\tprinciple = $%13.2f"

% (year, principle))


