CSC 171 - Introduction to
Computer Programming

Lecture #11 — A Brief Introduction to
Objects

What is a Class?

« If you have done anything in computer
science before, you likely will have heard
the term object oriented programming (OO
P)

« What is OOP, and why should | care?

What i1s OOP?

» The short answer is that object oriented
programming is a way to think about
“objects” in a program (such as variables,
functions, etc)

A program becomes less a list of instruction
and more a set of objects and how they
interact

Our First Class

class Student (object):
Simple Student class

Initializes the object

def init (self, first='', last='"',6id=0):
self.first name str = first
self last name str = last
self.id int = id

String representation, eg, for printing
def _ str_ (self):
return "{} {}, ID:{}".format\
(self.first name_str,\

self.last name str, self.id int)

Objects Respond to “Messages”

« As a set of interacting objects, each object
responds to “messages” sent to it

« The interaction of objects via messages makes a
high level description of what the program is
doing.

_—

Everything In Python Is An Object

« In case you hadn't noticed, everything in
Python is an object.

« Thus Python embraces OOP at a
fundamental level.

Type Versus Class

There is a strong similarity between a type
and a Python class

« Seen many types already: 1ist, dict,
str, ...

« Suitable for representing different data

» Respond to different messages regarding the
manipulation of that data

OOP Helps For Software Engineering

 Software engineering (SE) is the discipline
of managing code to ensure its long-term
use

« Remember: SE via refactoring

 Refactoring:
— Takes existing code and modifies it

— Makes the overall code simpler, easier to
understand

— Doesn't change the functionality, only the form!

More Refactoring

Hiding the details of what the message
entails means that changes can be made to
the object and the flow of messages (and
their results) can stay the same

Thus the implementation of the message
can change but its intended effect stay the
same.

This is encapsulation

OOQOP Principles

Encapsulation: hiding design details to make the
program clearer and more easily modified later

Modularity: the ability to make objects stand
alone so they can be reused (our modules). Like
the math module

Inheritance: create a new object by inheriting
(like father to son) many object characteristics
while creating or over-riding for this object

Polymorphism: (hard) Allow one message to be
sent to any object and have it respond
appropriately based on the type of object it is.

Class Versus Instance

 One of the harder things to get is what a class is
and what an instance of a class is.

 The analogy of the cookie cutter and a cookie.

Template Versus Exemplar

« The cutter is a template for stamping out
cookies, the cookie is what is made each
time the cutter is used

» One template can be used to make an
infinite number of cookies, each one just
like the other.

« No one confuses a cookie for a cookie
cutter, do they?

Same in OOP

You define a class as a way to generate new
instances of that class.

Both the instances and the classes are themselves
objects

the structure of an instance starts out the same, as
dictated by the class.

The instances respond to the messages defined as
part of the class.

Why A Class

We make classes because we need more
complicated, user-defined data types to
construct instances we can use.

Each class has potentially two aspects:

— The data (types, number, names) that each
instance might contain

— The messages that each instance can respond to.

Standard Class Names

The standard way to name a class in Python is
called CapWords:

Each word of a class begins with a Capital
letter

No underlines
Sometimes called CamelCase
Makes recognizing a class easier

The Basic Format of a Class Definition

Class name.
Must follow variable
naming rules. Parent object.

b e

class className (object) = : <-—— follows

T . the colon.
suite
Keyword T

indicating Class suite:
class is being contains code to
defined. define class.

dir () Function

The dir () function lists all the attributes of
a class

* You can think of these as keys in a
dictionary stored in the class.

pass Keyword

Remember, the pass keyword is used to
signify that you have intentionally left some
part of a definition (of a function, of a class)
undefined

« By making the suite of a class undefined,
we get only those things that Python defines
for us automatically

Our First Class

>>> class MyClass (object) :
pass

>>> dir (MyClass
'__class__', '__delattr__', '__dict__', '__doc__', '__eq _"',

' _format__', '__ge ', '__getattribute__', '__gt__', '__hash '
' _init_ ', '__le__', '__1t__', '__module__', '__ne ', '__new__',
' __reduce__', '__reduce_ex__', '__repr_ _', '__setattr _',

' __sgizeof__', '__str _', '__subclasshook__', '__weakref_ _']

>>> my_ instance = MyClass()
>>> dir (my_instance)

['__class__', '__delattr _', '__dict__', '__doc__', '__eq__',
'__format__', '__ge__', '__getattribute__', '__gt__', '__hash_ _'
'__init__', '__le__', '__1t__', '__module__', '__ne__', '__new__',
' _reduce__', '__reduce ex_ ', '__repr_ _', '__setattr _',

' __sgizeof_ _', '__str _', '__subclasshook__', '__weakref_ _']

>>> type (my_instance)
<class '__main__.MyClass'>

Constructor

« When a class is defined, a function is made
with the same name as the class

 This function is called the constructor. By
calling it, you can create an instance of the
class

» We can affect this creation (more later), but
by default Python can make an instance.

Dot Reference

» We can refer to the attributes of an object
by doing a dot reference, of the form:
object.attribute

« The attribute can be a variable or a function

* Itis part of the object, either directly or by
that object being part of a class

Examples

print (my_ instance.my val)
print a variable associated with the object

my_ instance

my instance.my method()

« Call a method associated with the object
my_ instance

 Variable versus method, you can tell by the
parenthesis at the end of the reference

How to Make an Object-local Value

* once an object is made, the data is made the
same way as in any other Python situation,
by assignment

» Any object can thus be augmented by
adding a variable

my instance.attribute = 'hello’

New Attribute Shown In Dir

&&&

— [__class_ ' ' delattr ',' dict ' ' doc_ ' ' format_ ",
'__getattribute ',' hash_ "' init "' module_ ',
' _new_'' reduce_ ' '_reduce ex ''_repr '
' setaftr ', ' sizeof ' ' str ' ' subclasshook '

' _weakref ', attribute]

