
CSC 171 - Introduction to

Computer Programming

Lecture #11 – A Brief Introduction to

Objects

What is a Class?

• If you have done anything in computer

science before, you likely will have heard

the term object oriented programming (OO

P)

• What is OOP, and why should I care?

What is OOP?

• The short answer is that object oriented

programming is a way to think about

“objects” in a program (such as variables,

functions, etc)

• A program becomes less a list of instruction

and more a set of objects and how they

interact

Our First Class

class Student(object):

Simple Student class

Initializes the object

def __init__(self, first='', last='',id=0):

self.first_name_str = first

self_last_name_str = last

self.id_int = id

String representation, eg, for printing

def __str__(self):

return "{} {}, ID:{}".format\

(self.first_name_str,\

self.last_name_str, self.id_int)

Objects Respond to “Messages”

• As a set of interacting objects, each object

responds to “messages” sent to it

• The interaction of objects via messages makes a

high level description of what the program is

doing.

Everything In Python Is An Object

• In case you hadn't noticed, everything in

Python is an object.

• Thus Python embraces OOP at a

fundamental level.

Type Versus Class

There is a strong similarity between a type

and a Python class

• Seen many types already: list, dict,
str, …

• Suitable for representing different data

• Respond to different messages regarding the

manipulation of that data

OOP Helps For Software Engineering

• Software engineering (SE) is the discipline
of managing code to ensure its long-term
use

• Remember: SE via refactoring

• Refactoring:

– Takes existing code and modifies it

– Makes the overall code simpler, easier to
understand

– Doesn't change the functionality, only the form!

More Refactoring

• Hiding the details of what the message

entails means that changes can be made to

the object and the flow of messages (and

their results) can stay the same

• Thus the implementation of the message

can change but its intended effect stay the

same.

• This is encapsulation

OOP Principles

• Encapsulation: hiding design details to make the

program clearer and more easily modified later

• Modularity: the ability to make objects stand

alone so they can be reused (our modules). Like

the math module

• Inheritance: create a new object by inheriting

(like father to son) many object characteristics

while creating or over-riding for this object

• Polymorphism: (hard) Allow one message to be

sent to any object and have it respond

appropriately based on the type of object it is.

Class Versus Instance

• One of the harder things to get is what a class is

and what an instance of a class is.

• The analogy of the cookie cutter and a cookie.

Template Versus Exemplar

• The cutter is a template for stamping out

cookies, the cookie is what is made each

time the cutter is used

• One template can be used to make an

infinite number of cookies, each one just

like the other.

• No one confuses a cookie for a cookie

cutter, do they?

Same in OOP

• You define a class as a way to generate new

instances of that class.

• Both the instances and the classes are themselves

objects

• the structure of an instance starts out the same, as

dictated by the class.

• The instances respond to the messages defined as

part of the class.

Why A Class

• We make classes because we need more

complicated, user-defined data types to

construct instances we can use.

• Each class has potentially two aspects:

– The data (types, number, names) that each

instance might contain

– The messages that each instance can respond to.

Standard Class Names

The standard way to name a class in Python is

called CapWords:

• Each word of a class begins with a Capital

letter

• No underlines

• Sometimes called CamelCase

• Makes recognizing a class easier

The Basic Format of a Class Definition

dir() Function

The dir() function lists all the attributes of

a class

• You can think of these as keys in a

dictionary stored in the class.

pass Keyword

Remember, the pass keyword is used to

signify that you have intentionally left some

part of a definition (of a function, of a class)

undefined

• By making the suite of a class undefined,

we get only those things that Python defines

for us automatically

Our First Class

Constructor

• When a class is defined, a function is made

with the same name as the class

• This function is called the constructor. By

calling it, you can create an instance of the

class

• We can affect this creation (more later), but

by default Python can make an instance.

Dot Reference

• We can refer to the attributes of an object

by doing a dot reference, of the form:

object.attribute

• The attribute can be a variable or a function

• It is part of the object, either directly or by

that object being part of a class

Examples

print(my_instance.my_val)

print a variable associated with the object

my_instance

my_instance.my_method()

• Call a method associated with the object
my_instance

• Variable versus method, you can tell by the

parenthesis at the end of the reference

How to Make an Object-local Value

• once an object is made, the data is made the

same way as in any other Python situation,

by assignment

• Any object can thus be augmented by

adding a variable

my_instance.attribute = 'hello'

New Attribute Shown In Dir

