
CSC 171 - Introduction to

Computer Programming

Lecture #10 – Dictionaries

What Is A Dictionary?

• In data structure terms, a dictionary is better

termed an associative array, associative list

or a map.

• You can think if it as a list of pairs, where

the first element of the pair, the key, is used

to retrieve the second element, the value.

• Thus we map a key to a value

Key Value Pairs

• The key acts as an index to find the

associated value.

• Just like a dictionary, you look up a word

by its spelling to find the associated

definition

• A dictionary can be searched to locate the

value associated with a key

Python Dictionary

• Use the { } marker to create a dictionary

• Use the : marker to indicate key: value

pairs

• Example:
contacts = {'bill': '353-1234’,\

'rich': '269-1234', 'jane':'352-1234'}

print (contacts)

Phone Contact List: Names and

Phone Numbers

Keys and Values

• Key must be immutable

– strings, integers, tuples are fine

– lists are NOT

• Value can be anything

Collections But Not a Sequence

• Dictionaries are collections but they are not

sequences such as lists, strings or tuples

– there is no order to the elements of a dictionary

– in fact, the order (for example, when printed)

might change as elements are added or deleted.

• So how to access dictionary elements?

Access dictionary elements

• Access requires [], but the key is the index!

>>> my_dict = {} an empty dictionary

>>> my_dict['bill'] = 25 # added the pair 'bill':25

>>> print(my_dict['bill’]) # prints 25

25

Dictionaries Are Mutable

• Like lists, dictionaries are a mutable data structure

– you can change the object via various operations, such

as index assignment

>>> my_dict = {'bill':3, 'rich':10}

>>> print(my_dict['bill'])

3

>>> my_dict['bill'] = 100

>>> print(my_dict['bill'])

100

>>>

Again, Common Operators

• Like others, dictionaries respond to these

len(my_dict)

• number of key: value pairs in the dictionary

element in my_dict

• boolean, is element a key in the dictionary

for key in my_dict:

• iterates through the keys of a dictionary

Fewer Methods

• Only 9 methods in total. Here are some:

– key in my_dict - does the key exist in the

dictionary?

– my_dict.clear – empty the dictionary

– my_dict.update(yourdict) - – for each key in

yourDict, updates my_dict with that key-value pair

– my_dict.copy – shallow copy

– my_dict.pop(key) - remove key, return value

Dictionary Content Methods

• my_dict.items() – all the key/value pairs

• my_dict.keys() - all the keys

• my_dict.values() - all the values

• There return what is called a dictionary

view.

• The order of the views corresponds are

dynamically updated with changes are

iterable

Views are Iterable

for key in my_dict:

print(key)

prints all the keys

for key, value in my_dict.items():

print(key, values)

prints all key/value pairs

for value in my_dict.values():

print(values)

prints all the values

Operators

>>> my_dict = {'a':2, 3:['x', 'y'], 'joe': 'smith'}

>>> dict_value_view = my_dict.values()

>>> dict_value_view

dict_values([2, ['x', 'y'], 'smith'])

>>> type(dict_value_view)

<class 'dict_values'>

>>> for val in dict_value_view:

print(val)

2

['x', 'y']

smith

>>> my_dict['new_key'] = 'new_value'

>>> dict_value_view

dict_values([2, ['x', 'y'], 'smith', 'new_value'])

>>> dict_key_view = my_dict.keys()

>>> dict_key_view

dict_keys(['a', 3, 'joe', 'new_key'])

>>> dict_value_view

dict_values([2, ['x', 'y'], 'smith', 'new_value'])

>>>

Membership Test

word_list = ["apple", "pear", "fruit", "pear", \

"cantelope", "melon", "melon", "banana", \

"orange", "banana", "orange", "grape", \

"mango", "tangerine", "watermelon"]

count_dict = {}

for word in word_list:

if word in count_dict:

count_dict[word] += 1

else:

count_dict[word] = 1

print(count_dict)

count_dict["pineapple"] =

count_dict.get("pineapple", 12)

print(count_dict)

get() Method

• get() method returns the value associated with a

dict key or a default value provided as second

argument. Below, the default is 0

Example – Counting Word

Occurrences in the Gettysburg Address

• We can use dictionary for many tasks, but

let’s start with a basic idea: using it to count

how many occurrences there are of various

words in Abraham Lincoln’s Gettyburg

Address

Text of the Gettysburg Address

Four score and seven years ago our fathers brought forth on

this continent, a new nation, conceived in Liberty, and

dedicated to the proposition that all men are created equal.

• Now we are engaged in a great civil war, testing whether

that nation, or any nation so conceived and so dedicated,

can long endure. We are met on a great battle-field of that

war. We have come to dedicate a portion of that field, as a

final resting place for those who here gave their lives that

that nation might live. It is altogether fitting and proper

that we should do this.

But, in a larger sense, we can not dedicate—we can not

consecrate—we can not hallow—this ground. The brave men,

living and dead, who struggled here, have consecrated it, far

above our poor power to add or detract. The world will little

note, nor long remember what we say here, but it can never

forget what they did here. It is for us the living, rather, to be

dedicated here to the unfinished work which they who fought

here have thus far so nobly advanced.

It is rather for us to be here dedicated to the great task

remaining before us—that from these honored dead we take

increased devotion to that cause for which they gave the last

full measure of devotion—that we here highly resolve that

these dead shall not have died in vain—that this nation, under

God, shall have a new birth of freedom—and that government

of the people, by the people, for the people, shall not perish

from the earth.

Initial Algorithm

1. Initialize our dictionary (word_count_dict) to

empty

2. Split the speech into a list of words

(speech_list)

3. For every word in speech_list:

a. If the word is in the dictionary:

Add 1 to its value

b. Else

Insert it in the dictionary with a value of 1.

Counting Words in a String

speech = "to be or not to be"

speech_list = speech.split()

word_count_dict = {}

for word in speech_list:

if word in word_count_dict:

word_count_dict[word] += 1

else:

word_count_dict[word] = 1

print(word_count_dict)

Output

{'to': 2, 'be': 2, 'or': 1, 'not': 1}

The Functions In Our Program

• add_word(word, word_count_dict) – Either

updates the number of occurences or adds the

word to the dictionary

• process_line(line, word_count_dict) –

Processes the line so there is a sequence of lower-

case words to add to the dictionary

• pretty_print(word_count_dict) – Print

words from the most frequent to the least frequent

• main() – Calls all these functions

add_word()

def add_word(word, word_count_dict):

Update the frequency count

Add the word if it isn't in the dictionary

if word in word_count_dict:

word_count_dict[word] += 1

else:

word_count_dict[word] = 1

process_line()

import string

def process_line(line, word_count_dict):

Process the line so there is a list of

lower-case words

line = line.strip()

word_list = line.split()

for word in word_list:

Ignore the "--" in the file

if word != '--':

word = word.lower()

word = word.strip()

Get out punctuation

word = word.strip(string.punctuation)

print(word)

add_word(word, word_count_dict)

pretty_print()

def pretty_print(word_count_dict):

Print nicely from highest to lowest

frequency

value_key_list = []

for key, val in word_count_dict.items():

value_key_list.append((val, key))

Sort method sorts on list's first element

frequency

reverse means highest are first

value_key_list.sort(reverse = True)

print('{:11s}{:11s}'.format('Word', 'Count’))

#print('%11s%11s' %('Word', 'Count'))

print('_'*21)

for val, key in value_key_list:

print('{:12s} {:3d}'.format(key, val))

main()

def main():

word_count_dict = {}

gba_file = open('gettysburg.txt', 'r')

for line in gba_file:

process_line(line, word_count_dict)

print('Length of the dictionary:’, \

len(word_count_dict))

pretty_print(word_count_dict)

main()

Comma Separated Values (CSV)

• CSV files are a text format that are used by many

applications (especially spreadsheets) to exchange

data as text.

• Row oriented representation where each line is a

row, and elements of the row (columns) are

separated by a comma.

• Despite the simplicity, there are variations and

we'd like Python to help.

CSV Module

• csv.reader takes an opened file object as

an argument and reads one line at a time

from that file.

• Each line is formatted as a list with the

elements (the columns, the comma

separated elements) found in the file.

Encodings Other Than UTF-8

• This example uses a csv file encoded with

characters other than UTF-8 (our default)

– In particular, the symbol ± occurs

• Can solve by opening the file with the

correct encoding, in this case windows-
1252

Example: Periodic Table

import csv

periodic_file = open("Periodic-Table.csv", "r",\

encoding="windows-1252")

reader = csv.reader(periodic_file)

for row in reader:

print(row)

Sample Output from the Periodic Table

['1', 'H', '1', 'I A', '1', 'hydrogen’, …]

['2', 'He', '18', 'VIII A', '1', 'helium’, …]

['3', 'Li', '1', 'I A', '2', 'lithium’, …]

['4', 'Be', '2', 'II A', '2', 'beryllium’,…]

['5', 'B', '13', 'III A', '2', 'boron’, …]

['6', 'C', '14', 'IV A', '2', 'carbon’, …]

['7', 'N', '15', 'V A', '2', 'nitrogen’, …]

['8', 'O', '16', 'VI A', '2', 'oxygen’, …]

['9', 'F', '17', 'VII A', '2', 'fluorine’,…]

['10', 'Ne', '18', 'VIII A', '2', 'neon’, …]

Parsing the Periodic Table

• Our program will read in basic information

about the elements from a periodic table

file.

• It will need the following functions

– read_table() – reads the file into a

dictionary

– parse_element() – parses the element into a

symbol and quantity

read_table()

import csv

def read_table(a_file, a_dict):

Read Periodic Table file into a dictionary

with element symbol as key.

data_reader = csv.reader(a_file)

for row in data_reader:

Ignore header rows:

elements begin with a number

if row[0].isdigit:

symbol_str = row[1]

#ignore end of row

a_dict[symbol_str] = row[:8]

parse_element()

def parse_element(element_str):

Parse element string ito symbol and

quantity eg, Si2 returns ('si", 2)

symbol_str = ""

quantity_str = ""

for ch in element_str:

if ch.isalpha():

symbol_str = symbol_str + ch

else:

quantity_str = quantity_str + ch

If no number, the default is 1

if quantity_str == "":

quantity_str = "1"

return symbol_str, int(quantity_str)

pertable.py

1. Read file

periodic_file = open("Periodic-Table.csv", "r", \

encoding="windows-1252")

2. Create dictionary of Periodic Table using

element symbols as keys

periodic_dict = {}

read_table(periodic_file, periodic_dict)

3. Prompt for input and convert compound into a

list of elements

compound_str = input("Input a chemical compound,\

hyphenated, eg, C-O2:")

compound_list= compound_str.split("-")

4. Initialize atomic mass

mass_float = 0.0

print("The compound is composed of: ", end=" ")

5. Parse compound list into symbol-quantity

pairs,

print name, and add mass

for c in compound_list:

symbol_str, quantity_int = parse_element(c)

print(periodic_dict[symbol_str][5], end=' ')

Add atomic mass

mass_float = mass_float + quantity_int*\

float(periodic_dict[symbol_str][6])

print("\n\nThe atomic mass of the compound is",\

mass_float)

periodic_file.close()

