
CSC 171 - Introduction to 

Computer Programming

Lecture #1 - Getting Started: An 

Introduction to Programming in 

Python

What Is Programming?

• Computers cannot do all the wonderful things that 
we expect without instructions telling them what 
to do.

• Program – a set detailed of instructions telling a 
computer what to do

• Programming – designing and writing computer 
programs

• Programming language – a language used to 
express computer programs.

– We will be learning the Python programming 
language



The Python Programmng Language

• Python is an interpreted language

• interpreted means that Python looks at each 
instruction, one at a time, and turns that instruction 
into something that can be run.

• That means that you can simply open the Python 
interpreter and enter instructions one-at-a-time.

• You can also import a program which causes the 
instructions in the program to be executed, as if 
you had typed them in.

• To rerun an imported program you reload it.

A First Program

print("This is my first Python program.")

statements
Calling the print method

The message that it will print



Character Data

• Our first program is printing a string of characters. 

• We are usually interested in manipulating more 
than one character at a time, but we treat single 
characters and strings of characters the same way.

• We can use either ' and " for delimit one or more 
characters, and we can extend them over more 
than one line by using “\”.

• For now, we use character data for input and 

output only.

Printing Output

• print takes a list of elements in parentheses 

separated by commas

– Because the element is a string, it will be printed it as 

is.

– After printing, it will move on to a new line of output

print("This is my first Python program.")



A second program

Problem – write a program which can find the 

average of three numbers.

Let’s list the steps that our program must perform to 

do this:

1. Add up these values

2. Divide the sum by the number of values

3. Print the result

Each of these steps will be a different statement.

Writing Our Second Program

1. Add up these values

2. Divide the sum by the number of 

values

3. Print the result

sum = 2 + 4 + 6

sum = 2 + 4 + 6 an assignment statement



Assignment Statements

• Assignment statements take the form:

variable = expression

Memory location where 

the value is stored Combination of constants

and variables

Expressions

• Expressions combine values using one of 
several operations.

• The operations being used is indicated by 
the operator:

+ Addition

- Subtraction

* Multiplication

/ Division



Expressions – Some Examples

2  + 5

4  *  value

x  /  y

What Can Go On The Left-Hand 

Side?

• There are limits therefore as to what can go 

on the left-hand side of an assignment 

statement.

• The left-hand side must indicate a name 

with which a value can be associated

• This name must follow the naming rules



Python “Types”

• Integers: 5

• Floats: 1.2

• Booleans: true

• Strings: "anything" or 'something'

• Lists: [,]  [‘a’,1,1.3]

• Others we will see

What Is A Type?

• A type in Python essentially defines two 
things:

– The internal structure of the type (what is 
contains)

– The kinds of operations you can perform

• 'abc'.capitalize()is a method you can 
call on strings, but not integers

• Some types have multiple elements 
(collections), we’ll see those later 



Fundamental Types

• Integer

– -1, -27, (to 232-1)

– -127L – L suffix mean any length, but 

potentially very slow

• Floating Point (Real)

– 3.14, 10., .001, 3.14e-10, 0e0

• Boolean (True or False values)

– True, False (note the capital letter)

Converting Types

• A character '1' is not an integer 1. We’ll see 

more on this later, but take my word for it.

• You need to convert the value returned by 

the input command (characters) into an 

integer

• int("123") yields the integer 123



Type Conversion

• Conversion functions

• int(some_var)returns an integer

• float(some_var)returns a float

• str(some_var) returns a string

• should check out what works:

– int(2.1) → 2, int('2') → 2, int('2.1')  fails

– float(2) → 2.0, float('2.0') → 2.0

– float('2') → 2.0, float(2.0) → 2.0

– str(2) → '2', str(2.0) → '2.0', str('a') → 'a'

Two Types of Division

• The standard division operator (/) yields a floating 

point result no matter the type of its operands:

– 2/3  → 0.6666666666666666

– 4.0/2 → 2.0

• Integer division (//) yields only the integer part of 

the divide (its type depends on its operands):

– 2//3 → 0

– 4.0//2 → 2.0



Modulus Operator

• The modulus operator (%) give the integer 

remainder of division:

– 5 % 3 → 2

– 7.0 % 3 →1.0

• Again, the type of the result depends on the 

type of the operands.

Order of Operations and 

Parentheses
Operator Description

() Parentheses (grouping)

** Exponentiation

+x, -x Positive, Negative

*, /, %, // Multiplication, Division, Remainder, 

Quotient

+, - Addition, Substraction

Precedence of *,/ over +,−is the same, but there precedents 

for other operators as well

Remember, parentheses always takes precedence



Writing Our Second Program

• sum = 2 + 4 + 6;

• Divide the sum by the 

number of values

• Print the result

average = sum / 3;

Names that describe what

the values represent

Writing Our Second Program

1. sum = 2 + 4 + 6

2. average = sum / 3;

3. Print the result

variable name

print("The average is ", average)



Writing Our Second Program

sum = 2 + 4 + 6

average = sum / 3;

print("The average is ", average)

Save as a “Module”

• When you save a file, such as our first 
program, and place a .py suffix on it, it 

becomes a python module

• You run the module from the IDLE menu to 

see the results of the operation

• A module is just a file of python commands



Errors

• If there are interpreter errors, that is Python 

cannot run your code because the code is 

somehow malformed, you get an error

• You can them import the program again 

until there are no errors

Common Error

• Using IDLE, if you save the file without a 
.py suffix, it will stop colorizing and 

formatting the file.

• Resave with the .py, everything is fine



Variables and Identifiers

• Variables have names – we call these names 

identifiers.

• Identifiers identify various elements of a 

program (so far the only such element are 

the variables.

• Some identifiers are standard.

Identifier Rules

• An identifier must begin with a letter or an 
underscore  _

• Java is case sensitive upper case (capital) or lower 
case letters are considered different characters. 
Average, average and AVERAGE are three 
different identifiers.

• Numbers can also appear after the first character.

• Identifiers can be as long as you want but names 
that are too long usually are too cumbersome.

• Identifiers cannot be reserved words (special 
words like int, main, etc.)



Some Illegal Identifiers

timeAndAHalf& is not 

allowed

time&ahalf

fourTimesFive* is not allowedfour*five

times2 or 

twoTimes

Cannot begin 

with a number

2times

myAgeBlanks are not 

allowed

my age

Suggested IdentifierReasonIllegal

Identifier

Using Stepwise Refinement to 

Design a Program

• You should noticed that when we write a 
program, we start by describing the steps 
that our program must perform and we 
subsequently refine this into a long series of 
more detailed steps until we are writing 
individual steps.  This is called stepwise 
refinement.

• Stepwise refinement is one of the most 
basic methods for developing a program.



Another Version of Average

• Let’s rewrite the average program so it can 
find the average any 3 numbers we try:

• We now need to:

1. Find our three values

2. Add the values

3. Divide the sum by 3

4. Print the result

Writing Average3b

This first step becomes:

1.1 Find the first value

1.2 Find the second value

1.3 Find the third value

2. Add the values

3. Divide the sum by 3

4. Print the result



Reading from the keyboard

• The function

value1 = input("What is the first value?")

• prints “Give me a value” on the python screen and waits till 

the user types something (anything), ending with Enter

• Warning, it returns a string (sequence of characters), no 

matter what is given, even a number ('1' is not the same as 1, 
different types)

• We can fix this by adding the program

value1 = int(value1)

Writing the input statements in Average3b

We can read in a value by writing:
value1 = input("What is the first value?")

value1 = int(value1)

value2 = input("What is the second value?")

value2 = int(value2)

value3 = input("What is the third value?")

value3 = int(value3)

2. Add the values

3.  Divide the sum by 3

4. Print the result



Writing the assignments statements in Average3b

value1 = input("What is the first value?")

value1 = int(value1)

value2 = input("What is the second value?")

value2 = int(value2)

value3 = input("What is the third value?")

value3 = int(value3)

sum = value1 + value2 + value3

3.  Divide the sum by 3

4. Print the result
Adding up the three values

Writing the assignments statements in 

Average3b
value1 = input("What is the first value?")

value1 = int(value1)

value2 = input("What is the second value?")

value2 = int(value2)

value3 = input("What is the third value?")

value3 = int(value3)

sum = value1 + value2 + value3

average = sum / 3

4. Print the result
Calculating the average



value1 = input("What is the first value?")

value1 = int(value1)

value2 = input("What is the second value?")

value2 = int(value2)

value3 = input("What is the third value?")

value3 = int(value3)

sum = value1 + value2 + value3

average = sum / 3

print("The average is ", average)

Average3b.py

Another example – calculating a payroll

• We are going to write a program which calculates 

the gross pay for someone earning an hourly 

wage.

• We need two pieces of information:

– the hourly rate of pay

– the number of hours worked.

• We are expected to produce one output: the gross 

pay, which we can find by calculating:

– Gross pay = Rate of pay * Hours Worked



Our Design for payroll

1. Get the inputs

2. Calculate the gross pay

3. Print the gross pay

1.1 Get the rate

1.2 Get the hours

We can substitute:

Coding the payroll program

• Before we code the payroll program, we recognize 

that the values (rate, hours and gross) may not

necessarily be integers.

• We will convert the inputted values to float

values.



Developing The Payroll Program (continued)

1.1 Get the rate

1.2 Get the hours

2. Calculate the gross pay

3. Print the gross pay

rate = input("What is your hourly pay rate?")

rate = float(rate)

Developing The Payroll Program (continued)

rate = input("What is your hourly pay rate?")

rate = float(rate)

1.2 Get the hours

2. Calculate the gross pay

3. Print the gross pay

hours = input("How many hours did you work?")

hours = float(hours)



Developing The Payroll Program (continued)

rate = input("What is your hourly pay rate?")

rate = float(rate)

hours = input("How many hours did you work?")

hours = float(hours)

2.    Calculate the gross pay

3. Print the gross pay

gross = rate * hours

Developing The Payroll Program (continued)

rate = input("What is your hourly pay rate?")

rate = float(rate)

hours = input("How many hours did you work?")

hours = float(hours)

gross = rate * hours

3. Print the gross pay

print("Your gross pay is $", gross)



Payroll.py

rate = input("What is your hourly pay rate?")

rate = float(rate)

hours = input("How many hours did you work?")

hours = float(hours)

gross = rate * hours;

print("Your gross pay is $", gross

Comments

• Our program is a bit longer than our previous programs 
and if we did not know how to calculate gross pay, we 
might not be able to determine this from the program 
alone.

• It is helpful as programs get much longer to be able to 
insert text that explains how the program works.  These are 
called comments.  Comments are meant for the human 
reader, not for the computer.

• A comment begins with a # (pound sign)

• This means that from the # to the end of that line, nothing 

will be interpreted by Python.

• You can write information that will help the reader with the 

code



# This program calculates the gross pay for an

# hourly worker

# Inputs - hourly rate and hours worked

# Output - Gross pay

# Get the hourly rate

rate = input("What is your hourly pay rate?")

rate = float(rate)

# Get the hours worked

hours = input("How many hours did you work?")

hours = float(hours)

# Calculate and display the gross pay

gross = rate * hours

print("Your gross pay is $", gross)

Example – A program to convert 

pounds to kilograms

• Our program will convert a weight 

expressed in pounds into kilograms.

– Our input is the weight in pounds.

– Our output is the weight in kilograms

– We also know that

Kilograms = Pounds / 2.2



Pounds to Kilograms Program (continued)

• Our program must:

1. Get the weight in pounds

2. Calculate the weight in kilograms

3. Print the weight in kilograms

Pounds to Kilograms Program (continued)

• Our program must:

1. Get the weight in pounds

2. Calculate the weight in kilograms

3. Print the weight in kilograms

lbs = input("What is the weight in pounds?")

lbs = float(lbs)



Pounds to Kilograms Program (continued)

lbs = input("What is the weight in pounds?")

lbs = float(lbs)

2. Calculate the weight in kilograms

3. Print the weight in kilograms

kg = lbs / 2.2

Pounds to Kilograms Program (continued)

lbs = input("What is the weight in pounds?")

lbs = float(lbs)

kg = lbs / 2.2

3. Print the weight in kilograms

print("The weight is ", kg, " kilograms")



ConvPounds.py

# Convert pounds to kilograms

# Input - weight in pounds

# Output - weight in kilograms

# Get the weight in pounds

lbs = input("What is the weight in pounds?")

lbs = float(lbs)

# Calculate and display the weight in kilograms

kg = lbs / 2.2;

print("The weight is ", kg, " kilograms")

Another Example – The Area and 

Circumference of A Circle

• Our program will calculate the area of a 

rectangle.

– Our input is the length and width.

– Our output is the area.

– We also know that

Circumference = 2  π  Radius

Area = π  Radius2



Our Program’s Steps

1. Get  the radius

2. Calculate the circumference

3. Calculate the area

4. Print the circumference and the area

Our Program’s Steps (continued)

1. Get  the radius

2. Calculate the circumference

3. Calculate the area

4. Print the circumference and the area

radius_str = input("Enter the radius of your circle:")

radius_int = int(radius_str)



Our Program’s Steps (continued)

radius_str = input("Enter the radius of your circle:")

radius_int = int(radius_str)

2. Calculate the circumference

3. Calculate the area

4. Print the circumference and the area

circumference = 2 * math.pi * radius_int

The math package includes the value of π

Our Program’s Steps (continued)

radius_str = input("Enter the radius of your circle:")

radius_int = int(radius_str)

circumference = 2 * math.pi * radius_int

3. Calculate the area

4. Print the circumference and the area

area = math.pi * radius_int * radius_int



Our Program’s Steps (continued)

radius_str = input("Enter the radius of your circle:")

radius_int = int(radius_str)

circumference = 2 * math.pi * radius_int

area = math.pi * radius_int * radius_int

4. Print the circumference and the area

print ("The circumference is: ", circumference, \

" and the area is: ", area)

radius_str = input("Enter the radius of your circle:")

radius_int = int(radius_str)

circumference = 2 * math.pi * radius_int

area = math.pi * radius_int * radius_int

print ("The circumference is: ", circumference, \

" and the area is: ", area)

We need to import the math package; that requires 

our program to have import math at the top of the program

We also need to include comments



# Calculate the area and circumference of a circle

# from its radius

import math

# Get the radius

radius_str = input("Enter the radius of your circle:")

radius_int = int(radius_str)

#Calculate the circumference 

circumference = 2 * math.pi * radius_int

# Calculate the area

area = math.pi * radius_int * radius_int

# Print the circumference and the area

print ("The circumference is: ", circumference, \

" and the area is: ", area)

The Rules

1. Think before you program

2. A program is a human-readable essay on problem 

solving that also happens to execute on a 

computer.

3. The best way to improve your programming and 

problem solving skills is to practice. 

4. A foolish consistency is the hobgoblin of little 

minds

5. Test your code, often and thoroughly!


