
Computer Programming for Non-

majors

Decisions, Decisions: Boolean

Expressions and Selection

What is a decision?

• A decision involves choosing whether to follow a
given course of action, or which one of several
different courses of action.

• We do this countless times during the day,
making literally thousands of small decisions.

• For example, when we reach an intersection, we
decide whether to cross it in the following manner:

IF the light is green

THEN cross the street

ELSE wait for the light to change

What is a decision? (continued)

IF the light is green

THEN cross the street

ELSE wait for the light to change

• This decision has three parts:

– the condition

– a course of action to follow if the condition is

true

– a course of action to follow if the condition is

false.

The basic structure of decisions

• There are many decisions that do not have

an IF-THEN-ELSE structure. For example,

IF there is mail in the mailbox

THEN open the mailbox and take it out

there is no action to be taken when the

condition is false.

The basic structure of decisions (continued)

• This can be rewritten as:

IF there is mail in the mailbox

THEN open the mailbox and take it out

ELSE do nothing

Choosing From More Than 2 Options

• There are occasions when we may do one of

several different things, depending on some value.

• Imagine that you are going to the bank, where are

several different type of transactions. You may

wish to:

– make a deposit

– cash a check

– transfer between accounts

– order new checks or

– just check your balance.

Choosing From More Than 2 Options (continued)

• We could write this as:
IF you want to make a deposit

THEN process deposit

ELSE IF you want to cash a check

THEN process check

ELSE IF you want to transfer money

THEN process transfer

ELSE IF you want to order checks

THEN process order

ELSE IF you want to check balance

THEN process balance

ELSE it must be an error

if and if-else

• Some problems may have a set of

instructions that are only performed under
some conditions. These require an if

construct.

• Other problems may have two or more

alternative sets of instructions depending on

some condition(s). If there are two

alternatives, it requires an if-else construct.

if and if-else (continued)

• The general form is:
if expression :

statement

or
if expression :

statement

else :

statement

Example – Is It Negative?

• Example – Write a program that determine

if a number is negative or non-negative

• Our algorithm (recipe for a program):

1. Get the number

2. Print whether its negative or non-negative

Is It Negative? (continued)

1. Get the number

2. Print whether its negative or non-negative

number = float(input("Please enter a number?"))

Is It Negative? (continued)

number = float(input("Please enter a number?"))

2. Print whether its negative or non-negative

2. IF the number is negative

2.1 THEN print a message saying that it is negative

2.2 ELSE print a message saying that it is not negative

Is It Negative? (continued)

number = float(input("Please enter a number?"))

2. IF the number is negative

2.1 THEN print a message saying that it is negative

2.2 ELSE print a message saying that it is not negative

if number < 0.0 :

print(number, " is a negative number")

else :

print(number, " is a NOT negative number")

IsItNegative.py

Tell a user if a number is negative or

non-negative

Ask the user for a number

number = float(input("Please enter a number?"))

Print whether the number is negative or

not

if number < 0.0 :

print(number, " is a negative number")

else :

print(number, " is a NOT negative number")

Simple Boolean Expressions

• Let's take another look at the first part of an
if structure:

if condition :

• A condition is either true or false; it is also

called by a more formal name, a logical

expression or Boolean expression, which

an combination of terms that is either true

or false.

Relational Operators

• So far, we have seen only one example of

this:

number < 0

• We want to know if the relationship is true,
i.e., is number less than 0.

• Since the truth or falsehood depends on this

relationship, we call < a relational

operator.

Relational vs. arithmetic operators

•Compare number < 0 to length *

width.

•number < 0 produces a true or false

•length * width produces a

number.

•In both cases, we are combining variables

to produce a new result, but the type of

result is entirely different.

Relational operators

-x +7 <= 10less than or equal

to

<=

x+1 >= 0greater than or

equal to

>=

x-1 < 2*xless than<

x+1 > ygreater than>

1 != 0is not equal to!=

x == yequals==

ExampleMeaningOperator

Relational operators (continued)

• Assume that x = 4 y = 6 and z = -2

• Which of the following are true?

x+z >= 0

x < z

x <= y

x != y+z

2*x + z == y

• The advantage of using variables in these

expressions is that the values may change from

one program run to another.

Example – Calculating Speed

• Example - Calculate the speed that you are
driving from the distance and time that you have
been driving. If you are going over the speed limit,
print a warning message.

• We know the following about our problem:
Available input:

• Distance in miles

• Time in hours

Required output:
• Speed in miles per hour

• Warning message (if appropriate)

Example – Calculating Speed (continued)

• We have to perform the following steps:

1. Read in the distance in miles and time in

hours.

2. Calculate and print the speed.

3. Print the warning if appropriate.

Example – Calculating Speed (continued)

1. Read in the distance in miles and time in

hours.

2. Calculate and print the speed.

3. Print the warning if appropriate.

1.1 Read distance traveled

1.2 Read the time traveled

Example – Calculating Speed (continued)

1.1 Read distance traveled

1.2 Read the time traveled

2. Calculate and print the speed.

3. Print the warning if appropriate.

2.1 Calculate the speed

2.2 Print the speed

Example – Calculating Speed (continued)

1.1 Read distance traveled

1.2 Read the time traveled

2.1 Calculate the speed

2.2 Print the speed

3. Print the warning if appropriate.

3. If the speed > 55

3. 1 then print the warning

Example – Calculating Speed (continued)

1.1 Read distance traveled

1.2 Read the time traveled

2.1 Calculate the speed

2.2 Print the speed

3. If the speed > 55

3. 1 then print the warning

miles = float(input

("How many miles have you driven?"))

Example – Calculating Speed (continued)

miles = float(input

("How many miles have you driven?"))

1.2 Read the time traveled

2.1 Calculate the speed

2.2 Print the speed

3. If the speed > 55

3. 1 then print the warning

hours = float(input

("How many hours did it take?"))

Example – Calculating Speed (continued)

miles = float(input

("How many miles have you driven?"))

hours = float(input

("How many hours did it take?"))

2.1 Calculate the speed

2.2 Print the speed

3. If the speed > 55

3. 1 then print the warning

speed = miles / hours

Example – Calculating Speed (continued)

miles = float(input

("How many miles have you driven?"))

hours = float(input

("How many hours did it take?"))

speed = miles / hours

2.2 Print the speed

3. If the speed > 55

3. 1 then print the warning

print("You were driving at ",

speed, "miles per hour.")

Example – Calculating Speed (continued)

miles = float(input

("How many miles have you driven?"))

hours = float(input

("How many hours did it take?"))

speed = miles / hours

print("You were driving at ", speed,

"miles per hour.")

3. If the speed > 55

3. 1 then print the warning
if speed > 55 :

Example – Calculating Speed (continued)

miles = float(input

("How many miles have you driven?"))

hours = float(input

("How many hours did it take?"))

speed = miles / hours

print("You were driving at ", speed,

"miles per hour.")

if speed > 55 :

3. 1 then print the warning

if speed > 55 :

Example – Calculating Speed (continued)

miles = float(input

("How many miles have you driven?"))

hours = float(input

("How many hours did it take?"))

speed = miles / hours

print("You were driving at ", speed,

"miles per hour.")

if speed > 55 :

3. 1 then print the warning

print("**BE CAREFUL!**",

"You are driving too fast!")

The Complete Speed Program

Calculate the speed that you are traveling

from the distance and time that you have

been driving.

Print a warning if you are going over the

speed limit.

Read in the distance in miles and

time driven

miles = float(input

("How many miles have you driven?"))

hours = float(input("How many hours did it take?"))

Calculate and print the speed

speed = miles / hours

print("You were driving at ", speed,

"miles per hour.")

Print the warning if appropriate

if speed > 55 :

print("**BE CAREFUL!**",

"You are driving too fast!")

Error Checking: The ConvertPounds Program

• Let’s take another look at the program

which converts pounds to kilograms.

• Since a weight cannot be a negative

number, our program should not accept a

negative number as a valid weight.

• Let’s rewrite the program to print an error

message if the weight entered in pounds is

negative.

Designing ConvertPounds2

Let’s plan our algorithm:
1. Read the weight in pounds

2. If the weight in pounds is negative, print an error message;

otherwise calculate and print the weight in kilograms.

Designing ConvertPounds2

Let’s plan our algorithm:
1. Read the weight in pounds

2. If the weight in pounds is negative, print an error message;

otherwise calculate and print the weight in kilograms.

2. IF weight in pounds is negative

2.1 THEN print an error message
2.2 ELSE calculate and print the weight

in kilograms

Designing ConvertPounds2

Let’s plan our algorithm:
1. Read the weight in pounds

2. IF weight in pounds is negative

2.1 THEN print an error message

2.2 ELSE calculate and print the weight

in kilograms

lbs = float(input("What is the weight in pounds?"))

Designing ConvertPounds2

Let’s plan our algorithm:
lbs = float(input

("What is the weight in pounds?"))

2. IF weight in pounds is negative

2.1 THEN print an error message

2.2 ELSE calculate and print the weight

in kilograms

if lbs < 0 :

Designing ConvertPounds2

Let’s plan our algorithm:
lbs = float(input

("What is the weight in pounds?"))

if lbs < 0 :

2.1 THEN print an error message

2.2 ELSE calculate and print the weight

in kilograms

print(lbs, " is not a valid weight.")

Designing ConvertPounds2

Let’s plan our algorithm:
lbs = float(input

("What is the weight in pounds?"))

if lbs < 0 :

print(lbs, " is not a valid weight.")

2.2 ELSE calculate and print the weight

in kilograms

kg = lbs / 2.2

print("The weight is ", kg, " kilograms")

ConvertPounds2.py

Convert pounds to kilograms

Input - weight in pounds

Output - weight in kilograms

Get the weight in pounds

lbs = float(input("What is the weight in pounds?"))

Ensure that the weight in pounds is

valid. If it is valid, calculate and

display the weight in kilograms

if lbs < 0 :

print(lbs, " is not a valid weight.")

else :

kg = lbs / 2.2

print("The weight is ", kg, " kilograms")

Constants

•Let's re-examine the statement in our program
ConvertPounds2 that does the actual

conversion:
kg = lbs / 2.2;

•Where does come 2.2 from? (There are 2.2

pounds per kilogram)

•How would know why we use 2.2 if we are not

familiar with the problem?

Constants (continued)

•We call the constant 2.2 a literal because this is

literally the value that we wish to use.

•Any value that we write in a program, whether it is a

number or a character or a character string is

considered a literal.

•The problem with using literals is that we do not

always know why this particular value appears in the

program.

•Not knowing makes it difficult to understand

precisely how the program works and makes it more

difficult if we need to correct or modify the program.

Constants (continued)

There is a better way to handle this.

While Python does not allow us to declare

values as constant (not subject to further

revision), we can give these values names and

indicate that their values should not and do

change within the program.

•Any such constants should appear at the

beginning of the program and should have

their names in all upper case characters.

ConvertPounds3.py

Convert pounds to kilograms

Set the pounds per kilogram at 2.2

POUNDS_PER_KG = 2.2

Get the weight in pounds

lbs = float(input("What is the weight in pounds?"))

Ensure that the weight in pounds is

valid. If it is valid, calculate and

display the weight in kilograms

if lbs < 0 :

print(lbs, " is not a valid weight.")

else :

kg = lbs / POUNDS_PER_KG

print("The weight is ", kg, " kilograms"

Setting Constants

•The other examples of constants include:
WITHHOLDING_RATE = 0.8

PROMPT = 'y'

ANSWER = "yes"

MAX_PEOPLE = 15

INCH_PER_FT = 12

SPEED_LIMIT = 55

Why Use Constants?

• While some values (like inches/ft and

lbs/kg) may never change, others will (tax

rates, wages, etc.). Now the change only

must be made in one place.

• It explains what the value represents.

Compounds Decisions

We saw earlier that not all decisions are simple cases of one or

two options depending on a single condition. Consider our

choice of transactions at the bank:
IF you want to make a deposit

THEN process deposit

ELSE IF you want to cash a check

THEN process check

ELSE IF you want to transfer money

THEN process transfer

ELSE IF you want to order checks

THEN process order

ELSE IF you want to check balance

THEN process balance

ELSE it must be an error

Compound Decisions (continued)

• Being able to do more than one statement is

helpful:
if lbs < 0 :

print(lbs, " is not a valid weight.");

else :

kg = lbs / LBS_PER_KG

print("The weight is ", kg, " kilograms");

Coding Compound Statements

• Sometimes the decision isn’t about
choosing one of two options; it’s about
choosing one of many more options.

Coding Compound Statements (continued)

• We could write:

if color == blue :

print "blue"

if color == red :

print "red"

if color == "yellow" :

print “yellow"

Coding Compound Statements (continued)

• Instead we can use the reserved word elif to replace else if

and avoid the extra indentation
if color == blue :

print "blue"

elif color == red :

print "red"

elif color == "yellow" :

print “yellow"

An Auto Insurance Program

• Example - Write a program to determine the cost
of an automobile insurance premium, based on
driver's age and the number of accidents that the
driver has had.

• The basic insurance charge is $500. There is a
surcharge of $100 if the driver is under 25 and an
additional surcharge for accidents:

of accidents Accident Surcharge

1 50

2 125

3 225

4 or more 375

An Auto Insurance Program (continued)

• Available input

– Number of accidents

– driver age

• Required output

– Insurance charge.

Designing the Insurance Program’s Algorithm

• Let's start with the basic algorithm:

1. Input the driver's age and number of

accidents.

2. Determine the insurance charge.

3. Print the charge and all other relevant

information.

Designing the Insurance Program’s Algorithm

1. Input the driver's age and number of accidents.

2. Determine the insurance charge.

3. Print the charge and all other relevant

information.

age = int(input("How old is the driver?"))

numAccidents = int(input

("How many accidents has the driver had?"))

Designing the Insurance Program’s Algorithm

age = int(input("How old is the driver?"))

numAccidents = int(input

("How many accidents has the driver

had?"))

2. Determine the insurance charge.

3. Print the charge and all other relevant information.

2.1 IF the driver is under 25

2.1.1 THEN Set the Age Surcharge to $100

2.2 Add on the appropriate surcharge if the driver

has had accidents

2.3 Add the surcharges to the rate

Designing the Insurance Program’s Algorithm

age = int(input("How old is the driver?"))

numAccidents = int(input

("How many accidents has the driver

had?"))

2.1 IF the driver is under 25

2.1.1 THEN Set the Age Surcharge to $100

2.2 Add on the appropriate surcharge if the driver

has had accidents

2.3 Add the surcharges to the rate

3. Print the charge and all other relevant information.

if age < 25 :

ageSurcharge = 100

Designing the Insurance Program’s Algorithm

… …

if age < 25 :

ageSurcharge = 100

2.2 Add on the appropriate surcharge if the driver

has had accidents

2.3 Add the surcharges to the rate

3. Print the charge and all other relevant information.

if numAccidents == 0 :

accidentSurcharge = 0

elif numAccidents == 1 :

accidentSurcharge = 50

elif (numAccidents == 2):

accidentSurcharge = 125

elif numAccidents == 3 :

accidentSurcharge = 225

elif numAccidents >= 4 :

accidentSurcharge = 375

Designing the Insurance Program’s Algorithm

… …

if numAccidents == 0 :

accidentSurcharge = 0

elif numAccidents == 1 :

accidentSurcharge = 50

elif (numAccidents == 2):

accidentSurcharge = 125

elif numAccidents == 3 :

accidentSurcharge = 225

elif numAccidents >= 4 :

accidentSurcharge = 375

2.3 Add the surcharges to the rate

3. Print the charge and all other relevant information.

rate = basicRate + ageSurcharge + accidentSurcharge

print("The total charge is $", + rate)

InsureCar.py

A program to calculate insurance premiums

based on the driver’s age and accident

record.

basicRate = 500

ageSurcharge = 0

accidentSurcharge = 0

Input driver's age and number of

accidents

age = int(input("How old is the driver?"))

numAccidents = int(input("How many accidents has
the driver had?"))

Determine if there is an age surcharge

if age < 25 :

ageSurcharge = 100

else :

ageSurcharge = 0

Determine if there is a surcharge

if numAccidents == 0 :

accidentSurcharge = 0

elif numAccidents == 1 :

accidentSurcharge = 50

elif (numAccidents == 2):

accidentSurcharge = 125

elif numAccidents == 3 :

accidentSurcharge = 225

elif numAccidents >= 4 :

accidentSurcharge = 375

Print the charges

print("The basic rate is $", basicRate)

print("The age surcharge is $", ageSurcharge)

print("The accident surcharge is $",
accidentSurcharge)

rate = basicRate + ageSurcharge +
accidentSurcharge

print("The total charge is $", + rate)

