THE JASON PROGRAMMING LANGUAGE, AN AID IN
TEACHING COMPILER CONSTRUCTION

Robert M. Siegfried
Computer Science Department
Saint Peter's College
2641 John F. Kennedy Blvd.
Jersey City, NJ 07306
SIEGFRIED R@spcvxa.spc.edu

ABSTRACT

Compiler construction is regarded as an important part of a computer science
education, offered in most undergraduate programs and required in most graduate
programs. The course covers the design and implementation of an important class of
programs, as well as many concepts that are considered important to a computer science
education. However, compiler construction is not always an easy course to teach to
undergraduates, particularly in a small college environment. Examples can be frustrating
with expression grammars being too small and subsets of languages such as Pascal being
too complex.

The JASON (Just Another Simple Original Notion) programming language is an
ALGOL-derived, limited-purpose, programming language specifically designed to
illustrate the principles of compiler construction. It contains all the important concepts
of procedural programming languages except for aggregate data types. As a result, a
JASON compiler is small enough for undergraduates to understand all the aspects of its
implementation, and comprehensive enough to allow students to extrapolate and
understand how to design larger-scale compilers.

The specifications for the JASON language are given, and sample programs are
shown. Sample programming projects are described for expanding JASON to include
features not currently contained in the language such as functions and character and
aggregate data types.

Presently, there are two front-ends written for a JASON compiler, one using a
table-driven LIL(1) parsing algorithm and the other using recursive descent, both
producing a translation of the source program in quadruples. A summary of the design
and organization for both front ends is given as well as initial design for the back end.

244

ESCCC - 98

INTRODUCTION

Compiler construction is generally regarded as an important course in a computer
science education. Most graduate programs require a course in the subject*. Following
the recommendation of the ACM, most undergraduate programs offer it as an advanced
elective.1 On the graduate level, it is usually offered as a two-semester sequence, while
most undergraduate courses in compiler construction concentrate on lexical and syntactic
analysis.

Compiler construction is considered a fairly important course for several reasons.
Compilers are considered important programs that are used daily by computer
professionals. Their design is one of the oldest fields in computer science, intimately
touching on several other areas of the discipline, such as programming language design,
formal language theory, algorithmic analysis, computer architecture and software
engineering. Because even a simple compiler can have between 2,000 and 10,000 lines
of source code, it gives students an opportunity to learn how to develop larger programs.

Lastly, compiler construction methods are used in the development of command
languages, which is a feature included in a wide range of commercial software.

Compiler construction, however, is not a particularly easy course to teach to
undergraduates. While many undergraduates study compiler construction, very few of
the textbooks on the subject are written specifically for them. The classic text on the
subject, Compilers: Principles, Techniques, and Tools by Alfred Aho, Ravi Sethi and
Jeffrey Ullman (better known as the "Dragon book") is too difficult for most
undergraduates. Thomas Parsons goes so far as to mention in the foreword of his book
that it is intended to prepare students for the "Dragon book."2

Examples, too, can be frustrating, largely because they are too small to be useful
in guiding a student through the process of working with a full programming language's
grammar. Some textbooks use small symbolic grammars containing a handful of
nonterminals and terminals that bear no resemblance to anything that one might see in a
real programming language. Expression grammars are popular because they are a
component of most programming languages and because of their highly recursive nature.
But while they are useful in teaching certain principles, they cannot by themselves prepare
a student for the larger-scale job of creating a parser or implementing semantic actions for
a useful programming language, no matter how small it may be.

Additionally, expression grammars present an additional problem when teaching
bottom-up parsing. Because of their extremely recursive nature, the initial state for such
grammars will have an item for every production in the language. While this is true for
most expression grammars, it is not usually the case for commercial programming
languages. The author has used fairly simple grammars as in-class examples, homework
problems and exam questions where there are only a small number of items in the initial

* An informal survey by the author of several graduate programs, primarily but not exclusively in the
New York Metropolitan area, found that compiler was a core or distributive requirement or an
admission requirement for a Master’s degree for most graduate programs in computer science.

245

ESCCC - 98

states; nevertheless, students frequently place an item for every production in the initial
state even when it is not necessary to do so. Several students have stated that they
believed that this was necessary because they used a state machine for an expression
grammar as a guide.

All this points to a great need for a good source language to be used as an example
when teaching compiler construction. Obviously, such a language should be as simple
as possible, but must include the most important features in a programming language.
Because even simple programs need input and output, statements supporting these must
be included. Similarly, a source language must have an assignment statement. Because
selection and repetition are essential for any real algorithm, a programming language
needs a WHILE statement and an IF-THEN-ELSE construction.

Although procedures are not essential for the implementation of algorithms, sound
software engineering principles demand them as well as a method for parameter passing.
Passing parameters by reference has the advantage of allowing values to be returned to
the main program or calling procedure; this allows us to omit passing parameters by value
as well as including functions in this sample language. While functions are useful in
serious programming, they introduce unnecessary complications in a language whose sole
purpose is to illustrate compiler construction.

Lastly, the source language must have two data types. While algorithms could be
implemented with only one data type (real numbers would be practical for numeric
algorithms), a second data type is needed if students are going to learn anything about type
checking; more than two data types starts to make the language too complex. It seems
most practical to use integers and real numbers because integer values are compatible with
real variables but the reverse is not true.

THE JASON LANGUAGE

The JASON language began as a parsing problem for a compiler construction
class. Recognizing its potential as a teaching tool, the author wrote a front end for the
original syntax, which was extremely limited, and expanded it to the current language,
expanding the compiler as necessary. Since the original syntax specified a "baby"
language, the author named it for his then-four-month-old son. The name is also an
acronym for "Just Another Simple Original Notion."

The basic syntax for a JASON program is:

PROGRAM ProgramName;
Procedures, if any
DECLARE

DataType IdList;

BEGIN

Statement (s)
END.

246

ESCCC - 98

The reserved word DECLARE is not used if there are no variables or procedures being
declared. JASON has two valid data types, REAL and INTEGER. An IdList is one or
more identifiers separated by commas. Procedures have the following syntax:

PROCEDURE ProclName;
PARAMETERS
DataType Identifier;

Procedures, 1f any
DECLARE
DataType IdList;

BEGIN
Statement (s)
END;

The reserved word PARAMETERS is not used if there are no parameters being declared.
The language is case-insensitive and all key words are reserved; they are shown in upper
case for emphasis.

JASON has the seven valid types of statements:

READ Identifier

WRITE Identifier

SET Identifier = Expression

IF Condition THEN Statement(s) ELSE Statement (s) ENDIF
WHILE Condition DO Statement (s) ENDWHILE

UNTIL Condition DO Statement(s) ENDUNTIL

CALL Identifier{ArgList)

The parentheses are not used in a CALL statement if no parameters are being passed.

JASON includes four arithmetic operators (+, -, *, and /) and four relational
operators (=, >, <, and !). The exclamation point (!) is used to connote "is not equal
to" so that the entire operator set consists of one-character operators. Comments are
enclosed in braces, e.g.,

{ This is a comment in JASON }

Below is an example of a program written in JASON:

PROGRAM EvalFormula;
{ Calculates the result of a basic formula
Tllustrates the use o¢of procedures in JASON }
DECLARE
INTEGER a;
REAL b;
{ The procedure which evaluates the formula repeatedly }
PROCEDURE FindFormula;
PARAMETERS
INTEGER x;
REAL vy

247

ESCCC - 98

BEGIN
WHILE x ! O DO
IF x < 0 THEN SET y = 10 - 4.5%*x
ELSE SET yv = 4.5*x + 10
ENDIF;
WRITE vy;
READ X
END;
{ Main program }
BEGIN
READ a;
CALL FindFormula{a, b);
WRITE b

END.

There are several advantages in using JASON as a source language when in
teaching compiler construction. Firstly, the language's syntax is completely predictive;
every statement begins with a reserved word and variable declarations begin with the data
type. This simplifies the process of creating the table for top-down parsing and for coding
the recursive descent parser, which makes it easy for students to follow the compiler
development process.

JASON is a relatively small language, with only 27 nonterminals and 39 tokens.
The entire language is specified in BNF in only 54 productions, making it much smaller
than Pascal or C. Both front ends are under 3000 lines of source code written in C,
making it fairly easy for undergraduates to understand the code.

Robert Sebesta points out that the use of a reserved word for selection closure
makes if-then-else statements more regular, especially when there are compound if-then-
else constructs.3 He also observes that ENDIF provides more information than END
does by itself. For this reason, JASON closes IF-THEN-ELSE statements with the
reserved word ENDIF and similarly provides the reserved words ENDWHILE and
ENDUNTIL to close these respective loops, making programs in JASON easier to read.

While the use of these ENDIF, ENDWHILE and ENDUNTIL added a few extra tokens
to the language, it proves quite valuable in debugging JASON programs and in debugging
projects that expand the capabilities of the JASON compiler.

As noted above, operators in JASON all have one character only. This simplifies
the scanner, in keeping the design philosophy that "simple is beautiful" and allows an
instructor to assign the simple scanner project of enhancing JASON by adding several
two-character operators, such as > =, <=, and !=.

Lastly, JASON programs are fairly easy to read as well as to write, simplifying
the task of writing programs for the compiler to use as sample data. This becomes
particularly important if students are given the assignment of extending the compiler. It
is particularly frustrating if one cannot tell if the error is in the compiler's source code or
in the sample program that the compiler is trying to read. The simpler the language is,
the less likely it is that this problem will occur.

248

ESCCC - 98

THE JASON COMPILER
The JASON compiler consists of 4 source files:
JjasonX.c version X of the parser (complete with semantic actions)
scan.c the scanner
symbol.c the symbol table manager
quad.c the intermediate code generator

with declarations in the header files scan.h, symbol.h and quad.h. There are actually
two parsers, the table-driven LI(1) parser (jason0.c) and the recursive descent parser
(jasond.c) which can be used interchangeably and will generate identical intermediate
code for the same JASON programs.

The scanner uses three different functions to scan words, numbers and operators
as well as a fourth function to skip past comments and white space. This modular
structure makes it easy it for students to relate the finite automaton that recognizes the
lexical elements of the language to the source code of the scanner.

The symbol table consists of four structures:

a string table, containing the lexemes as one long array of characters.
a name table, containing the starting position of the iexemes within the string as their
lengths.

e an attribute table, containing the various attributes of the lexemes, including the token
associated with it.

e 2 hash table, which points to the name table.

Figure 1 shows the basic symbol table structure.

Hash Table Name Table Attribute Table

—

—
Illlllllllmlllllllll

String Table

Figure 1 - The basic organization of the symbol table.

Any assignment involving the addition of arrays and records to JASON requires
the addition of an extra table, containing a list of pointers to other attribute table entries.
This also necessitates the addition of two extra fields to the attribute table, holding the
starting position within the extra table and the number of entries.

249

ESCCC - 98

Because ALGOL-style name scoping rules apply to JASON, the symbol table must
have the capacity to open and close scopes as required by the source program. This is
supported by a series of pointers, which connect an attribute table entry to all other entries
in its scope as well as to other entries with outer scopes that share its lexeme. Figure 2
illustrates how name scoping is implemented within the symbol table.

The recursive descent parser was written in five discrete stages, adding additional
features to the language with each new stage and then having the necessary semantic
actions added. This helped ensure that programs were parsed correctly and that the
correct intermediate code was generated. After the front end was completed, the table-
driven parser was written and tested for the entire language and then the semantic actions
were added. When this was completed, further testing was done to ensure that the two
programs generated the same intermediate code for the same JASON programs.

/

We create a linked list of identifiers We also keep a linked list of identifiers
belonging withing the scope. This will sharing the same name pointing from the
simply the process of closing the scope most closely nested outer scope and so on.

when we are finished.

Figure 2 - The implementation of namescoping within the symbol table. Two
difference views of the attribute table are shown above.

The recursive descent parser used the following format for all procedures:

void ProcNonterminall (void)
{
/* If a specific token was expected */
if (thistoken != OnlyTokenUsedHere)
error ("OnlyTokenUsedHere expected”, linenum);
thistoken = gettoken();
/* If one of n alternative tokens was expected */
switch (thistoken) {
case TokenAlternativel:
case TokenAlternative?2:

case TokenAlternativeN: thistoken = gettoken(); break;
default: error ("Expected one of these tokens", linenum);
} N
/* If a nonterminal was expected */
ProcNonterminal2 () ;

250

ESCCC - 98

The semantic actions were added to these functions in the appropriate places.
The table-driven parser was based on an algorithm in the "Dragon book. "4

The grammar of the language was stored in three structures. The parse table is
a 27 by 39 array containing the number of the production where the right sentential form
derived from a given nonterminal begins with a given token and zeros for all other
possible tokens. There is also an array containing the right sentential forms of all the
productions, excluding epsilon- productions and an array containing the starting position
of each production within the array of right sentential forms as well as the number of
variables in that right sentential form. After testing to ensure that it parsed programs
correctly, the semantic actions were added as well as the function that calls the proper
semantic routine.

The intermediate code chosen was quadruples, which are stored as an array of
records, each of which containing an opcode followed by three addresses. These
addresses are themselves a record, containing the type entry (variable, constant, or label)
followed by a pointer to its attribute table entry. There is also a function which prints the
intermediate code in easy-to-read format.

POTENTIAL PROJECTS

Although the JASON compiler’s front end and the source language that it
translates can be considered complete enough to use as a teaching example, there are
several additional features that can be added to JASON as a student assignment. They
include:

Compound Conditions

The JASON language currently allows for simple conditions only. Adding the
conjunctive logical operators & (AND) and \ (OR) requires a minor change to the symbol
table manager to include the additional tokens and replacing the production

Condition :: = Expression RelOp Expression
with the productions

Condition :: = Condition \ CompoundCondition

Condition :: = CompoundCondition

CompoundCondition :: = CompoundCondition & SimpleCondition
CompoundCondition :: = SimpleCondition

SimpleCondition :: = Expression RelOp Expression

The necessary semantic actions must also be added. The rest of the grammar is unaffected
by this change.

251

ESCCC - 98

Character Strings

All character strings are assumed to hold up to 255, using an array of 256 bytes
to hold the current length of the string and the string itself. String literals are enclosed
in quotation marks, which are not allowed to appear in strings themselves. This requires
students to extend the scanner to allow it to read quoted strings, to add the reserved word
STRING to the symbol table manager and to add the necessary semantic action to handle
type checking and the assignment of values to string variables. A more ambitious project
would also include implementing concatenation using the -+ sign and the functions
POSITION(s, t), which returns the position of a substring t within the string s and
SUBSTRINGCs, i, j) which returns a substring beginning at position i that includes j
characters. A program in extended JASON involving string is shown below:

PROGRAM StringSample;

VARIABLES
STRING Name, First;
INTEGER FirstLength
BEGIN
SET Name = “John Smith”;:
SET FirstLength = POSITION (Name, “ “) - 1;

SET First = SUBSTRING (Name, 1, FirstLength};
WRITE First
END.

The keyword DECLARE is changed to VARIABLES for reasons discussed below.

Arrays and records

Arrays and records are more involved and are best implemented using a user-
defined type. The syntax for programs using type declarations becomes:

TYPES
TypeDeclarations

where array type declarations and record type declarations can be appear in whatever
order or combination as the user wishes. Declaring an array type has the general form

DataTypeName ARRAY DataTypel[Size]:

where DataType can be either INTEGER, REAL, STRING (if added to the language) or
any user-defined type. Similarly, declaring a record has the general form:

DataType RECORD
Variable declarations
END;

where field declarations can be grouped or declared one at a time depending on the user's
needs. In adding data types to JASON, the keyword DECLARE is replaced with

VARIABLES to make the language a but more readable. A program using records and
arrays might look like this:

252

ESCCC - 98

PROGRAM ExtendedSample;
{ Illustrates the use of records and arrays }
TYPES
ARRAY Arraytype INTEGER{5];
RECORD RecordType
STRING Name;
ArrayType Grades;
END;
VARIABLES
RecordType StudentRecord;
BEGIN
READ StudentRecord.Name
READ StudentRecord.Grades([l];
WRITE StudentRecordGrades(1l]:;
END.

The implementation of type declarations requires the addition of an auxiliary table
to hold the size of an array and pointers to the attribute table entries for the fields of a
record, as discussed above. The current attribute table uses an enumerated type to store
the data type of a variable or constant; the inclusion of user-defined types requires that
variable types be stored as a pointer to the appropriate attribute table entry.
Implementation of type declarations also requires modifying the grammar to allow for the
nonterminal variable, which can include an index, a record field or both. The changes
in the grammar appear in Appendix 2.

Functions

In general, the syntax for a function is:
FUNCTION FunctionName RETURNS DataType;
PARAMETERS
DataType Identifier;

DECLARE (or VARIABLES)
DataType IdList;

BEGIN
Statement (s):
RETURN (Variable)
END;

A sample function appears below:
FUNCTICON Average3 RETURNS REAL;
PARAMETERS
INTEGER a;
INTEGER b;
INTEGER c;
VARIABLES
REAL Sum, Averade;
BEGIN
SET Sum = a + b + ¢;
SET Average = Sum/3;
RETURN (Average)
END;

253

ESCCC - 98

PLANS FOR THE BACK END

At the present time, there is no back end for the JASON compiler. When written,
it will consist of two parts: a code generator and an optimizer.

The code generator will create a version of the program in PC assembler. Despite
the popularity of the Inte]l 80x86 family of processors and MS-DOS/Windows as a
platform, the choice is not so obvious given the fact that the early processors in the 80x86
family did not include floating point arithmetic. However, given the fact that the 486 and
Pentium processors all include a floating point unit, this should not be a problem.
Assembly language was chosen as the target language because of its greater readability;
machine code for the Intel processors is notoriously difficult to read. Assembly language
allows students the opportunity to see the result of compiling a JASON program more
clearly manner than they would if machine language was used as the target language.

Only local block optimization is planned for both the intermediate and final code.

Although few undergraduate courses in compiler construction cover optimization in any

detail, it is too important to be omitted from any compilers that computer science students
are going to study.

SOURCE CODE FOR JASON FRONT ENDS

Anyone wishing a copy of source code for the JASON compiler front ends should
contact the author at the above address.

ACKNOWLEDGMENTS

Niraj C. Shah of the IBM Corporation wrote part of the code for the first two
stages of the recursive descent parser; the author wants to thank him for his assistance.

This project was completed while on a sabbatical. The author would like to
acknowledge this support from Saint Peter's College.

REFERENCES

[1] Allen B. Tucker, ed., Computing Curricula 1991: Report of the ACM/IEEE-
CS Joint Curriculum Task Force, Association for Computing Machinery, New
York, 1990,

[21 Thomas W. Parsons, Introduction to Compiler Construction, Computer Science
Press, New York, 1992, p. xiii.

(3] Robert W. Sebesta, Concepts of Programming Languages, 2nd edition,
Benjamin/Cummings Publishing Company, Reading, MA, 1993, pp. 264-265.

[4] Alfred Aho, Ravi Sethi and Jeffrey Ullman, Compilers: Principles, Techniques,
and Tools, Addison-Wesley Publishing Company, Reading MA, 1986, p. 187.

254

ESCCC - 98

APPENDIX 1
THE LEXICAL ELEMENTS AND BNF GRAMMAR OF JASON

The classes of token in JASON are:

Keyword (each keyword is a distinct token)
identifier

constant (numeric literal)

operator (a single character)

The keywords of JASON are:

BEGIN ENDIF PARAMETERS SET
CALL ENDUNTIL PROCEDURE THEN
DECLARE ENDWHILE PROGRAM UNTIL

DO IF READ WHILE
ELSE INTEGER REAL WRITE
END

Identifer :: = Letter (Letter | Digity*

Letter is one of
ABCDEFGHIJKLMNOPQRSTUVWYZ

where all letters are converted to upper while scanning.
Digitisoneof 0123456789

Constant :: = Digit* {.} Digit*

Operatorisoneof .;,()=<>1+-%*/

Program ::= Header DeclSec Block .

Header ::= program identifier ;

DeclSec ::= declare VarDecls ProcDecls | <nil>
VarDecls ::= VarDecls VarDecl | VarDecl

VarDecl ::= DataType IdList ;

DataType ::= real | integer

IdList ::= IdList , identifier | identifier

ProcDecls ::= ProcDecls ProcDeci | ProcDecl | <nil>
ProcDecl ::= ProcHeader ProcDeclSec Block ;
ProcHeader ::= procedure identifier ;

ProcDeclSec ::= ParamDeclSec DeclSec

ParamDeclSec ::= parameters ParamDecls | <nil>

ParamDecls ::= ParamDecls ParamDecl | ParamDecl

255

ESCCC - 98

ParamDecl ::= DataType identifier ;

Block ::= begin Statements end

Statements ::= Statements ; Statement | Statement
Statement ::= read identifier

| set identifier = Expression

| write identifier

| if Condition then Statements ElseClause
| while Condition do Statements endwhile
| until Condition do Statements enduntil
| call identifier Arglist

|

<nil>
ElseClause ::= else Statements endif | endif
ArgList 1= (Arguments) | <nil>
Arguments ::= Arguments , Argument | Argument
Condition ::= Expression RelOp Expression
Expression ::= Expression AddOp Term | Term
Term ::= Term MultOp Factor | Factor
Factor :: = identifier | constant
RelOp === | ' | > | <
AddOp =+ | -
MultOp ::= * | /
APPENDIX 2

THE LEXICAL ELEMENTS AND BNF GRAMMAR OF EXTENDED JASON
The classes of token in JASON are:

Keyword (each keyword is a distinct token)
identifier

numeric literals

string literals

operator (a single character)

The keywords of JASON are:

ARRAY ENDWHILE PROGRAM SUBSTRING
BEGIN FUNCTION READ THEN
CALL IF REAL TYPES

DO INTEGER RECORD UNTIL

ELSE PARAMETERS RETURN VARIABLES
END POSITION SET WHILE
ENDIF PROCEDURE STRING WRITE
ENDUNTIL

256

Identifer :: = Letter (Letter | Digit)*

Letter is one of
ABCDEFGHIJKLMNOPQRSTUVWYZ

where all letters are converted to upper while scanning.

Digitisoneof 0123456789

NumericLiterals ::= Digit* {.} Digit*

String Literals ::= " AnyCharacter® "

AnyCharacter is any keyboard character EXCEPT the quotation mark (").
Operatorisoneof .;,()=<>!+-*/&\

Program ::= Header DeclSec Block .

Header ::= program identifier ;

DeciSec ::= TypeDeclSec VarDeclSec SubProgramDecls | <nil >
TypeDeclSec ::= types TypeDecls

TypeDecls :: = TypeDecls TypeDecl | TypeDecl

TypeDecl :: = identifier TypeSpecification

TypeSpecification :: = ArraySpecification | RecordSpecification
ArraySpecification ::= array DataType [numericliteral] ;
RecordSpecifcation :: = record VarDecl end,

VarDeclSec :: = variables VarDecls

VarDecls ::= VarDecls VarDecl | VarDecl

VarDecl ::= DataType IdList ;

DataType ::= real | integer | identifier

IdList ::= IdList , identifier | identifier

SubProgramDecls ::= SubProgramDecls SubProgramDecl
| SubProgramDecl
| <nil>

SubProgramDecl ::= ProcDecl | FunctionDecl
ProcDecl ::= ProcHeader SubProgrambeclSec Block ;

ProcHeader ::= procedure identifier ;
SubProgramDeclSec ::= ParamDeclSec DeclSec
ParamDeclSec ::= parameters ParamDecls | <nil>
ParamDecls ::= ParamDecls ParamDecl | ParamDecl
ParamDecl ::= DataType identifier ;

Block ::= begin Statements end

ESCCC - 98

257

ESCCC - 98

FunctionDecl :: = FunctionHeader SubProgramDecl FunctionBlock ;
FunctionBlock ::= begin Statements ReturnStatement end
Statements ::= Statements ; Statement | Statement
Statement ::= read Variable

| set Variable = Expression

| write Variable
| if Condition then Statements ElseClause
| while Condition do Statements endwhile
| until Condition do Statements enduntil
| call identifier Arglist
|

< nil >
ElseClause ::= else Statements endif | endif
ReturnStatement ::= ; return (identifier)
Arglist ::= (Arguments) | <nil>

Arguments ::= Arguments , Argument | Argument
Condition :: = Condition \ CompoundCondition | CompoundCondition
CompoundCondition :: = CompoundCondition & SimpleCondition

| SimpleCondition
SimpleCondition ::= Expression RelOp Expression
Expression ::= Expression AddOp Term | Term
Term ::= Term MultOp Factor | Factor
Factor ::= Variable | numericliteral | stringliteral
Variable ::= Variable. Variable | identifier [Expression] | identifier
RelOp == | ! | > | <
AddOp =+ | -
MultOp ::=

258

