
Will There Ever Be Consensus on CS1?

Robert M. Siegfried
1
, David Chays

1
, and Katherine G. Herbert

2

1
Department of Mathematics and Computer Science, Adelphi University, Garden City, NY 11530, USA

{siegfrie, chays}@adelphi.edu
2
Department of Computer Science, Montclair State University, Montclair, NJ 07043, USA

herbertk@mail.montclair.edu

Abstract - The choice of programming language, the

approach by which students are taught and the software

tools made available to students have been controversial

issues in many ways. While there once was a consensus of

some sort within the computer science education community,

it is much more difficult to find common ground among

those of us who teach introductory programming courses.

The literature is explored and answers sought to the

question of which language is optimum in teaching novice

programmers, as well as the approach that ought to be used.

Finally, the question of whether a consensus can be reached

is addressed.

Keywords: Introductory Programming, Programming

Language, Java, Objects Early Approach.

1 Introduction

 The choice of a programming language to use in a CS1

course and the software tools that are made available to

students is a potentially thorny subject that has been the

subject of much debate. There is also a long history of

introductory programming courses changing from one

programming language to another and from one compiler to

another when a newer language or a newer compiler (or

development environment) was perceived as better. The

difficulty that students had in deciphering error messages

with industry-standard compilers led to the development of

WATFOR, the FORTRAN compiler that was the first

widely-available compiler for student use [1]. When PL/I

came out, this was also criticized, in part because of its ties

to IBM and in part because of the complexity of the

language [2]. The difficulties that students encountered led

to the development of PL/C, another compiler designed

specifically for student use [3]. The development of the

Pascal programming language and its compiler by Wirth [4]

led to a period of time when most students learned to

program in a programming language that was generally

considered ideal for teaching, albeit not for commercial use.

 Yet not even Pascal escaped criticism. Both Haberman

and Kernighan [5, 6] wrote about its unsuitability for larger-

scale programming projects. And while many colleges and

universities tried switching to C, this was not generally

considered successful. Johnson considered it too large and

complex for use in an introductory course [7]. Brilliant and

Wiseman recognized the appeal of an industry-standard

language such as C, but did not consider this enough of an

advantage to outweigh its drawbacks [8].

 Since the decline of Pascal, many colleges and

universities have changed their introductory programming

language to C++ and then to Java. The Advanced

Placement exam followed a similar trend, by changing its

language of instruction from Pascal to C++ and then to Java.

 There has not been a comprehensive survey to show

what languages are currently in use in the United States but

there have been some studies that provide insight into what

is being used in other countries. For many years, Richard

Reid of Michigan State University surveyed over 200

colleges and universities in the United States, usually on an

annual basis, and in recent years, Java has become the most

commonly used first programming language, either by itself

or in combination with another language [9].

 The most comprehensive study was done by de Raadt

et. al. and found that Java and C++ are the most common

programming languages taught in an introductory

programming course in Australia and that concerns about the

job market were a primary consideration in choosing a

programming language [10]. They also discovered that

these courses were as likely to teach the imperative

paradigm as the object-oriented paradigm. While there has

been no similar study in the United States that demonstrates

this, it is commonly assumed that Java is the most common

programming language, at least in part, because employers

want to hire people who know it, consequently students want

to learn it, and finally colleges and universities feel pressure

to teach it.

 Yet there was some dissatisfaction in the results of first

year programming classes. Reges [11] reported that there

was a decline in student enrollment at the University of

Washington, something that has been seen across the

country. Blum and Cortina cite a decline of 6% in

Advanced Placement Computer Science courses, despite an

increase in enrollment in all other disciplines in which there

are Advanced Placement exams [12].

 With so many introductory courses in Java being

offered, one must ask the question “Should we teach Java to

beginning programmers?” And if we should be teaching

Java in our introductory courses, what approach should we

be using?

2 Should We Teach in Java?

 Java is not necessarily an ideal language for teaching

introductory programming. It is not a simple language,

given the number of reserved words that it contains, its more

complex syntax and the complexity that inevitably comes

with any object-oriented language. Hadjerroult notes that

Java is not sufficiently simple for novice programmers to

learn quickly [13]. Reges notes the Computer Science

Department at the University of Washington faced several

problems, including a lack of basic programming skills that

were reported by instructors of upper-level undergraduate

courses [11]. It has been suggested that the objects early

approach may be at least partially responsible for this trend.

This attitude may be summed up by Elliot Koffman [14],

who posted a message to the SIGCSE mailing list that said

“I fear that we have reinvented the ‘new math’ syndrome and

many of us are unaware of it.”

 Yet despite these misgivings, a large number of

colleges and universities still teach introductory

programming in Java and many of them use an objects early

approach. The twenty-third Reid list showed that sixty of

the 120 schools that responded to the survey that year use

Java, with a few additional schools using Java in

combination with another programming language [15].

Many of the textbooks covering introductory programming

in Java use the objects early approach. Decker and

Hirschfield rebutted most of the common reasons why

instructors are reluctant to use the objects early approach

[16]. While these views are supported by their experiences

teaching introductory programming, they present no hard

data supporting this position.

2.1 Is Java the optimal language?

 The Sixth Reid List (from 1992) showed that most of

the colleges and universities surveyed taught beginning

programming in Pascal [17]. In the intervening years there

has been no one language that the computer science

education community has agreed upon to the extent that they

agreed on Pascal in its heyday. There are many reasons why

Java has not become the dominant introductory

programming language to the extent that Pascal did a

generation ago. Java is a single-paradigm language; it is

impossible to program in Java without making repeated,

explicit use of objects. This is problematic for many

instructors who are uncomfortable with an objects early

approach [18]. Additionally, in the first few years after

Java’s release, its lack of easy console input and its lack of a

student-friendly development environment made some

reluctant to introduce it; this is no longer the case, given the

introduction of the Scanner class, which simplifies input

reading and parsing, and the development of Integrated

Development Environments (IDEs) such as BlueJ and

DrJava. The difficulty that beginning students encountered

using an earlier IDE, Code Warrior, was one of the

complaints when Adelphi originally shifted the introductory

programming course to Java [19].

2.2 Objects early or objects late?

 There has been a large amount of controversy within

the past few years as to whether objects should be

introduced toward the beginning of the course or later in the

course, typically in the second half of the semester. Bruce

points out that the trend toward introducing objects earlier

has grown over time as more introductory Java textbooks

introduce object-oriented concepts earlier than in the past

[20]. Bruce is personally in favor of an objects early

approach built around pedagogic tools similar to what he

and his colleagues developed at Williams College, although

he recognizes that there are some problems associated with

this approach, including the lack of textbooks based on it.

 Bruce is not the only one pointing out problems with

the objects early approach. Buck and Stucki claim that the

early introduction of software design, which is typically a

factor in the objects early approach, is harmful because it

exposes students to issues for which they do not have the

necessary cognitive skills [21]. They prefer to use an

“inside/out approach”, where they introduce objects by using

the primitives of the programming language and simple

library calls. This approach teaches students many of the

advantages of objects early without the complications that

many people associate with the objects early approach.

 Reges is one of several people who expressed concerns

about the amount of material that CS1 instructors are

expected to cover in one semester. McConnell and Burhans

found that textbooks have grown significantly larger over the

past 40 years and devote less space to selection and

repetition statements, as well as variables and arrays. Much

of this resembles the “Procedures Early” approach which

became popular in the late 1980s and early 1990s. The

“Procedures Early” approach was also controversial, with

many people, such as Pattis, pointing out its shortcomings

[22].

2.3 What other languages might be suitable?

 Most other programming languages used in

introductory programming courses are criticized in one way

or another. C++ is considered inadequate, because of its

descent from C and because it is too easy to avoid the use of

objects when programming in it. Brilliant and Wiseman

raise the issue of whether one should or should not cover

object-oriented programming when teaching C++ [23].

While King offered no direct complaints about C++, he

offered many reasons why Java was superior as a first

programming language [24].

 Rosener advocates the use of Visual Basic in a first

programming course because students pick it up easily [25]

and there are many schools where Visual Basic is used in

some introductory courses, but its lack of pointers (or

references) and the inability to design classes of objects in it

make it unsuitable in an upper level course. There is also

the issue of the extent to which an instructor wishes to delve

into the issue of event-driven programming, which is an

important part of the visual programming paradigm.

 Grandell et. al. advocate the use of Python as an

introductory programming language, based on their

experience teaching it to high school students [26]. Mannila

and deRaadt, in their extensive analysis of various

programming languages, conclude that Python is the most

suitable language for beginners. While Python has benefits

as an easy-to-use prototyping language, its dynamic type

system and its use of exact indentation to delimit blocks can

inadvertently lead students to programming errors that may

be difficult to detect.

 Reas and Fry developed the programming language

Processing for use in graphics arts [27]. The syntax is

similar to Java, but it is an interpreted language and requires

little of the syntactic framework commonly found in a Java

program. It has the advantage of being able to motivate

students who wish to create images on the screen, but it

lacks many of the features expected in a general purpose

language.

 Advocates of the TeachScheme! approach claim that

the simpler syntax makes it ideal for teaching beginners to

design algorithms and provides a good stepping stone to

Java and other languages. But there is no published data

based on objective studies using control populations to

support this. The only study involving the use of Scheme as

a segue into the study of another programming language was

done by Wick and Stevenson [28], who found that students

who learned Scheme prior to learning Prolog did not have

greater proficiency in Prolog compared to the students who

studied just Prolog. The only discernible benefit that they

could identify was that these students learned a second

programming language in another paradigm.

3 What Features Make A Language

Ideal For Beginners?

 The most detailed study of the design of programming

language for programming novices and the cognitive issues

that must be addressed was done by Linda McIver [29].

McIver wrote that a programming language should be

useful, usable, human-centered (i.e., designed around the

programmer’s needs), task- or domain- oriented, consistent

(both with what programmers already know and within the

language’s own constructs) and robust. However, she found

that this was usually not the case; programming languages

usually are easy to translate, hard to use (especially by

beginners), hardware-centered and oriented around a

paradigm (occasionally leading to awkward features in a

language).

 Consequently, McIver recognized the importance of

understanding how the novice perceives text written in a

particular programming language if we are to evaluate the

suitability of any programming language in teaching novices

how to program. Green [30] identified thirteen cognitive

dimensions of notation. These are, in reality, properties that

notations or language may possess that will either make it

easier or harder for novices to learn them. McIver found

that six of these are of particular importance in evaluating

programming languages for use by novice programmers:

1. “Closeness of mapping” addresses how well the

notation represents the domain for which it is

intended, e. g., if we are trying to describe

arithmetic, how closely does our notation resemble

arithmetic?

2. To be “consistent”, similar semantics should be

expressed in similar syntax. Therefore, an

if..elseif..else construction would be considered

more consistent than a switch statement.

3. “Diffuseness” refers to the verbosity of the

language. COBOL would be an example of a

diffuse notation.

4. “Error-prone” constructions are those that are more

likely to lead to errors, or perhaps even encourage

them. The use of separate pairs of brackets for

different dimensions of an array might be

considered error-prone.

5. “Hard mental operations” would require the

programmer to prefer potentially difficult tasks in

writing a program, e.g., entering all numeric

constants in an unusual number base.

6. “Role expressiveness” refers to the ability of a

reader to infer the usage of a feature just from its

structure.

 McIver examined several languages, including Java,

which failed to meet the optimal case for cognitive

dimensions. These results appear in Table I, accompanied

by the cognitive dimensions of Pascal, C++ and Scheme,

languages that have been used or are currently used in first

year programming courses. An examination of this table

leads to some interesting conclusions. Firstly, Pascal

remains the closest to optimum of the four languages shown.

Secondly, Java is a small improvement over C++. And

lastly, Scheme scores more favorably than the other

languages.

 Students in a CS1 class do not need to know an entire

programming language; however, they do need to be able to

use the basic skills associated with programming in Java and

to be able to adapt to new programming challenges that will

arise. The following list contains the programming skills

and language features that can help focus students learning

to program in an object-oriented language such as Java and

help them to adapt to the next level of programming:

• Programming/problem-solving

• Adaptive programming skills

• Basic input and output

• Primitive data types

• Basic encapsulation

• Methods

• Conditional statements

• Iterative statements (loops)

• Working with collections (arrays)

• File input and output

• The anatomy of a class

• The String class

• Working with the API

• Documentation

• Discussion of advanced topics in Java

While many of these items would appear to be language-

specific, a CS1 course using another language would replace

a few of these items with analogous constructs.

 While the reader may expect to see many of these

topics, there are some that might not be expected. While it

is generally agreed upon that input/output, primitive data

types, encapsulation and methods, conditional and iterative

statements and documentation should be taught in a CS1

class, the other topics are frequently omitted. Two of the

most important skills in the above list are programming/

problem-solving skills and adaptive programming skills,

which every student must learn. Frequently, a CS1 course in

Java contains so much material that these two most

important skills can be pushed aside. It is easy to assume

that students with an understanding of mathematics that is at

least on the level of algebra can adapt these problem solving

skills to computing; however there is a body of evidence that

strongly suggests that this is not the case. Biggs’ structure of

the observed learning outcome (SOLO) taxonomy discusses

such issues [31, 32]. It illustrates how students will not

learn a topic unless the instructor aligns course objectives to

learning outcomes and demonstrates to students how to

perform the necessary tasks. Since programming is a vital

task for any technologist-student, it becomes necessary to

give him/her the skills that allow the student to survive

beyond the test.

4 Some Conclusions

 Java is not an ideal language for beginners. McIver

points out that Java’s modular structure and requirement that

every data item and method be part of a class mandate a

certain minimum size for every program [25], no matter how

simple it may be:

public class MyFirst {

 public static void main(String[] args) {

 System.out.println

 ("This is my first Java program.");

 }

}

This also applies to the definition of constants, which can

require as many as four reserved words:

public static final double PI = 3.14;

 While a subset of Java can minimize the problems that

novice programmers must face, it is very difficult to create a

subset that addresses all these concerns.

 The popularity of Java is partially due to the fact that it

is used for many real-world applications, particularly web-

related applications. Yet there are many features that make

it difficult for novice programmers. However, most of the

other languages that are presented as alternatives for use in a

CS1 course have some aspects that make them undesirable

to some faction within the computer science education

community.

 Arguably, the discipline may need a new teaching

language that will offer the benefits that the computer

science education community found in Pascal over thirty-

TABLE I

COGNITIVE DIMENSIONS OF JAVA COMPARED WITH OTHER LANGUAGES (TAKEN FROM [25])

Dimension Optimal Java Pascal C++ Scheme

Closeness of Mapping High Low Medium Low to Medium Low

Consistency High Low to Medium Low to Medium Low Medium to High

Diffuseness Medium to

High

Low Low to Medium Low Low

Error-proneness Low Medium to High Low to Medium High Medium to High

Hard Mental

Operations

Low Medium to High Low to Medium High Medium to High

Role Expressiveness High Low Medium to High Low to Medium Low

five years ago. But at the present, it seems that there will be

great difficulty finding that consensus.

5 References

[1] P. W. Shantz, R. A. German, J. G. Mitchell, R. S. K.

Shirley, and C. R. Zarnke, “WATFOR: The University of

Waterloo FORTRAN IV”, Communications of the ACM

Vol. 10, No. 1 (January 1967), p. 41-44.

[2] R. C. Holt, “Teaching the Fatal Disease or Introductory

Computer Programming Using PL/I”, ACM SIGPLAN

Notices, Vol.8 No. 5 (May 1973), p. 8-23.

[3] R. W. Conway and T. R. Wilcox, “Design and

Implementation of a Diagnostic Compiler for PL/I”,

Communications of the ACM Vol. 16 No. 3 (March 1973),

p. 169-179.

[4] N. Wirth, “The Programming Language Pascal”, Acta

Informatica Vol. 1 (1971), p. 35-63.

[5] A. N. Habermann, “Critical Comments on the

Programming Language Pascal”, Acta Informatica 3 (1973),

p. 47-57.

[6] B. W. Kernighan, “Why Pascal is Not My Favorite

Programming Language”, Computing Science Technical

Report No. 100, AT&T Bell Laboratories (April 1981).

[7] L. F. Johnson, “C In The First Course Considered

Harmful”, Communications of the ACM, v. 38. n. 5 (May

1995), pp. 99-101.

[8] S. S. Brilliant and T. Wiseman, “The First

Programming Paradigm and Language Dilemma”, ACM

SIGCSE Bulletin Vol. 28, No. 1 (1996), p. 338-342.

[9] D. Reid. The Reid List of the First Course Language

for Computer Science Majors. http://www.csee.wvu.edu/

vanscoy/reid.htm, 2001.

[10] M. de Raadt, R. Watson and M. Toleman,

“Introductory Programming: What’s Happening Today and

Will There be Any Students to Teach Tomorrow” Australian

Computer Science Communications 26(5): 277 - 284.

[11] S. Reges, “Back to Basics in CS1 and CS2”, ACM

SIGCSE Bulletin Vol. 38 No. 1 (March 2006), p. 293-297.

[12] AP Program Summary Report 2005, available at

http://apcentral.collegboard.com as quoted by Lenore Blum

and Thomas J. Cortina, “CS4HS: An outreach Program for

High School CS Teachers”, ACM SIGCSE Bulletin, Vol.

39, Issue 1 (March 2007), p. 19-23.

[13] S. Hadjerroult, “Java as First Programming Language:

A Critical Evaluation”, ACM SIGCSE Bulletin Vol. 30, No.

2 (June 1998), pp.43-47.

[14] O. Astrachan, K. Bruce, E. Koffman, M. Kölling and

S. Reges, “Resolved: Objects Early Has Failed”,

Proceedings of the thirty-sixth SIGCSE technical

symposium on Computer Science Education”, 2005, p.451-

452. , Quoted in Reges Stuart, “Back to Basics in CS1 and

CS2”, ACM SIGCSE Bulletin Vol. 38 No. 1 (March 2006),

p. 293-297.

[15] R. Reid, Reid First Course List 23 (February 1, 2002).

Last retrieved April 11, 2008 from http://www.csee.wvu.

edu/ ~vanscoy/ REID23.HTM

[16] R. Decker and S. Hirschfield, “The Top 10 Reasons

Why Object Oriented Programming Can’t Be Taught in

CS1”, ACM SIGCSE Bulletin Vol. 26, No.1 (March 1994),

p. 51-55.

[17] R. Reid, Reid First Course List 6 (April 19, 1992). Last

retrieved April 11, 2008 from http://www.csee.wvu.edu/

~vanscoy/ REID06.HTM

[18] L. Mannila and M. de Raadt, “An Objective

Comparison of Languages for Teaching Introductory

Programming”, Proceedings of the Sixth Koli Calling

Conference on Computer Science Education, 2006, available

at http://www.it.uu.se/research/group/upcerg/Publications/

proceedingsKoliCalling2006/research2.pdf

[19] S. Bloch, Adelphi University, private communication,

April 1999.

[20] K. B. Bruce, “Controversy on how to teach CS1: a

discussion on the SIGCSE-members mailing list”, ACM

SIGCSE Bulletin, Vol. 36, Issue 4, December 2004, p. 29-

34.

[21] D. Buck and D. J. Stucki, “Design early considered

harmful: graduated exposure to complexity and structure

based on levels of cognitive development”, p. 75-79.

[22] R. E. Pattis, “The ‘Procedures Early’ Approach In

CS1: A Heresy”, ACM SIGCSE Bulletin, Vol. 25, Issue 1,

March 1993, p. 122-126

[23] S. S. Brilliant and T. Wiseman, “The First

Programming Paradigm and Language Dilemma”, ACM

SIGCSE Bulletin Vol. 28, No. 1 (1996), p. 338-342.

[24] K. N. King, “The Case for Java as a First Language”,

Proceedings of the 35
th

 Annual Southeast ACM Conference

(April 1997), p. 124-131.

[25] W. Rosener, “Programming Language Consider-ations

for Introductory Computer Courses: Consider Visual Basic”,

Seventh International Integration of Academic and

Technical Education Conference (Beaver Creek, Colorado,

June 28-July 1, 1999), available at http://arapaho.nsuok.edu/

~rosener/papers/vb/vb.html

[26] L. Grandell, M. Peltomäki, R.-J. Back and T.

Salakoski, “Why Complicate Things? Introducing

Programming In High School Using Python”, Proceedings

of the 8th Australian conference on Computing education,

Volume 52 (Hobart, Australia), 2006, p. 71 – 80.

[27] C. Reas and B. Fry, “Processing: A Learning

Environment For Creating Interactive Web Graphics”,

International Conference on Computer Graphics and

Interactive Techniques (San Diego, CA, 2003), p. 1.

[28] M. R. Wick and D. E. Stevenson, “On Using Scheme

to Introduce Prolog”, ACM SIGCSE Bulletin Vol. 38. No.

1, March 2006, p. 41-45.

[29] L. McIver, “Syntactic and Semantic Issues in

Introductory Programming Education”, Ph.D. Dissertation,

Monash University, 2001.

[30] T. R. G. Green, “Cognitive Dimensions of Notation

and other Information Artefacts”, People and Computers V:

Proceedings of Human Computer Interaction 1989

(HCI’89), Cambridge University Press, 1989.

[31] J. Biggs, “Assessing for Learning: Some dimensions

underlying new approaches to educational assessment”. The

Alberta Journal of Educational Research Vol. 41, No. 1

(1995), p. 1-17.

[32] J. B. Biggs and K. F. Collis, Evaluating the Quality of

Learning – the SOLO Taxonomy. New York: Academic

Press. xii + 245 pp.

