Asteroids!

What Does The Game Do?

We're going to re-create the 1979 Atari classic
video game “Asteroids” in Alice.

In the game, you pilot a ship around in any
direction and use the spacebar to shoot a
laser at incoming asteroids.

The incoming asteroids vary in size and speed
and fly in from off the screen.

If you hit all of the asteroids, you win! If you
crash into one, you lose.

Topics Covered

* Building a game like this covers many topics in
both Alice and computer science in general

* Main Topics:
— Collision Detection
— Game Loops
— Conditional “If/Else” Statements

e Other Topics:
— Texture Mapping
— Random Numbers
— Lists

First Steps

* Open Alice and select the “space” default.

* The first thing we want to do is remove the
ground. Go to “ground” in the object tree and
click on it. Navigate to ‘properties’ in the
lower left corner of the screen and set
‘isShowing’ to ‘false’. -

pointOfView = position: 0, 0, 0; orie
isShowing = false
+| Seldom Used Properties

+ Sounds
4+ Texture Maps

First Steps

* Now we want to add the fighter that we’ll fly
around in space. Click on the “add objects”

button.

* Scroll over to “SciFi” and add a “fighter” to
the world. —

Class | Class
Fighter = GorillaRobot

bur computer |ii on your computer |ii on your computer || o

First Steps

* Use the camera controls to get an overhead
view of the fighter.

* Go to world—2>properties and make a new
boolean variable called “currentlyPlaying”. Set
it to “false”.

Making the Asteroids

Now we want to make the
asteroids that we’ll have to
shoot in the game.

For this demonstration,
we’re going to use thirty
asteroids. However, you
can use as many as you like
to make the game harder
or easier.

Click on “add objects” and
go to “shapes”. Add thirty
“icosahedron” objects to
the world.

() icosahedron

() icosahedron3
() icosahedron4
() icosahedron2
() icosahedron5
() icosahedron6
() icosahedron?
() icosahedrons
() icosahedron9

Texturing the Asteroids

 We want to make the asteroids look like real
asteroids. To do this, we're going to steal the
moon texture from the ground and apply it to
each asteroid.

* For each icosahedron, click on it in the object
tree. Click on the “properties” tab.

* Change “skin texture” to
“ground.moonTexture”.

;écolor =
;éopacity = 1 (100%)
;;vehicle = world

~skin texture = ground.MoonTexture

;éfi"ingsty'e = s ® MoonTexture

ground.MoonTexture

pointOfvView =

fighter.texture
“isShowing = Laser.texture

Seldom Used <None>
Sounds
Texture Maps

Managing the Asteroids

 We'll want to put the
asteroids in a list so that
we can manage them
later.

e Goto “world” in the

(= [world]
ME? camera
@3 light |
© ground :
Q) fighter

la icosahedron

Q) icosahedron3
Ia icosahedron4
Q) icosahedron2
Ia icosahedron5
Q) icosahedron6
Q) icosahedron?
Q) icosahedron8
Q) icosahedron9

world's details

(properties [methods [functions |

|z] asteroids = | icosahedron, icosahd|

|E| currentlyPlaying = true
(081 asteroidsList = [icosahedron, icd

| create new variable |

object tree and click on
“properties”. Click
“create new variable”.

* A box should pop up.

atmosphereColor =
ambientLightColor =

ambientLightBrightness = 1

fogStyle = no fog

fogDensity = 0.1

fogNearDistance = 1 meter

fogFarDistance = 256 meters
[+] Seldom Used Properties

[+ Sounds
[+] Texture Maps

| T

Managing the Asteroids

® O O create new variable

Name: ‘asteroidsList
Type: () Number
) Boolean
® Object
) Other...
Values: make a |List
new item remove item

OK

Cancel

Name the variable
“asteroidsList”.

Click on “object” under
type.

Make sure to check the
box in the bottom-right
corner that says “make a
List”.

For each asteroid, click
“newltem” and set each

new item to its respective
icosahedron object.

Resizing the Asteroids

Move all of the asteroids off-screen out of the
camera view.

Now we want to make the asteroids bigger or
smaller and make them all different sizes.

The good news is that because we made our
list, the tedious step is over.

If we want to do something to all the
asteroids, we can now tell the list to modify all

of its objects.

Resizing the Asteroids

* Click on “world” in the object tree and create
a hew method called “resizeAsteroids”.

* Dragin aloop and have it run thirty times (or
as many asteroids as you have in your world)

* Pick any icosahedron and drag its resize
method into the loop. Set the duration to O.

~ Loop 30 times times show complicated version

icosahedron8 resize 2 more...

Resizing the Asteroids

* Go to world = properties and drag the list
of asteroids on to the icosahedron in the
method.

* Click “ith item from array” and then
expressions =2 index.

- [l Loop 30times — times [show complicated version |

<No’

first item from list
last item from list
random item from list

index

Lo~V E WN~O

expressions index

3D Text.currentScore

other...

Resizing the Asteroids

 We don’t want every asteroid to be the
same size, though. We want some to be
smaller and some bigger.

 We're going to use the random number
function to do this.

* Go to world 2> functions and drag in
“random number” to the number in your
resize method.

Resizing the Asteroids

e Choose “5” as the minimum and “10” as the
maximum. Set the duration to 0.

 Your code should now look like this:

W T e smrescs g cee = e —— e —— | - T m e e — —— ——— ———— 1

world.resizeAsteroids No parameters

No variables

=/ Loop 30 times times | show complicated version l

item index from world.asteroids resize random number minimum =5 maximum = 10 more... duration = 0 seconds

Creating the Laser

° We’re NOW going to Home > Local Gallery (English) > Medie
make the laser that we
shoot at the asteroids.

* To do this, we’re going
to modify a flag object u
to use just the pole. E}

* Go to “add objects”
and click on the : :
“Medieval” folder. Add on your computer on your compu
a “banner” to the
world.

Class
BattleAxe

Creating the Laser

Find the banner in the
object tree.

Click on the plus next to
“banner”. Right-click on
“flag” and “finial” and
delete them both.

Only “pole” should be
remaining.

Rename the “banner” to
“Laser” by right-clicking
on “banner” and hitting
“rename”.

Creating the Laser

e Position the laser so it’s right underneath the
fighter. You may have to resize it, turn it, or roll
it. This step requires some tinkering.

* |In our example, we used the following in-place
methods:

— Move to Fighter

— Orient to Fighter

— Quarter Revolution Left

— Quarter Revolution Backward

* Set the laser’s vehicle to “fighter” and set
isShowing to false.

Shooting the Laser

e Create a new world method and call it
“laserShot”.

* The basicidea is to...
— Detach the laser from the ship
— Make it visible
— Move it one hundred meters
— Make it invisible
— Move it back to the fighter and orient it to the fighter
— Reattach the laser to the ship.

Your Method Should Look Like This

@ world.my first method |@ world.laserShot

world.laserShot No parameters

No variables

Laser set vehicle to world duration = 0 seconds more...

Laser set isShowing to true duration = 0 seconds more...

Laser move down 100 meters duration = 1 second style = abruptly more...
Laser set isShowing to false duration = 0 seconds more...

Laser move to fighter duration = 0 seconds more...

Laser orient to fighter duration = 0 seconds more...

~| Do together

Laser turn left 0.25 revolutions duration = 0 seconds more...
Laser roll left 0.25 revolutions duration = 0 seconds more...
Laser move down 10 meters duration = 0 seconds more...

Laser set vehicle to fighter duration = 0 seconds more...

Starting the Game

* Remember the variable we made called
“currentlyPlaying? We can set
“currentlyPlaying” to “true” whenever we
want the game to be going on, and we can set
it to “false” whenever we want the game to
stop. More on this later.

* Now we're going to write two simple methods
that will occur when the game is won or lost.

Game Won

We’'re going to make a method called
“GameWon” that checks to see if all the asteroids
have been shot (are invisible).

To do this, we’re going to make a true or false
“switch”. We'll first set the switch to “true”,
meaning that all the asteroids are gone.

Then we’ll loop through the list of asteroids. If at
any time an asteroid is visible, we flip the switch
to “false”.

At the end of the loop we can check to see what
position the switch is in and then react
accordingly.

Game Won

Go to world>methods and create a new
method named “GameWon”.

Drag in a “loop” and set the loop to loop thirty
times.

Drag in an “if/else” into the loop, and another
“if/else” below the loop.

Click “create new variable”. Make it a boolean
called allGone. Set the value to “true”.

[TE] allGone = true

—~ Loop 30 times

=/ If true

times ‘ show complicated version I

(Do Nothing
Else

(Do Nothing

= If true

(Do Nothing

Else

(Do Nothing

Game Won

* Pick a random icosahedron and go to its
properties. Drag “isShowing” into the if/else
within the loop.

* Go to world—2>properties and click on
“asteroidsList”. Drag it in to the name of the
icosahedron.

* Pick “ith item from list”, “expressions” and
“index”.

allGone = true

= Loop @ index from 0 ~ up to (but not including) 30 times =~ incrementing by 1

Bl If 2 <No \ orid.asteroidsList

(Do Nothing first item from list

Else last item from list

(Do Nothing random item from list

index

0
1
2
3
4
5
6
7
8
9
3D Text.currentScore
other... i

GameWon

* Dragin “allGone” into the first “if/else”
statement.

e Setits value to “false”.

|E| allGone = true

op [122index from 0 ~ up to (but not includ

~ item index from world.asteroid:

expressions b

GameWon

* Dragin “gameWon” onto the “true” in the
second “if/else” statement.

* Go to world—2>properties and drag in the
“currentlyPlaying” variable into the second

“if/else”.

e Set it to “false”.

|7/ alGone = true

~| Loop 30 times times | show complicated version
= If item index from world.asteroidsList .isShowing
 allGone set value to false = more..
Else
(Do Nothing

[If allGone
: ~ world.currentlyPlaying set value to false = more...

Else

(Do Nothing

Asteroid Movement

* Now we’re going to make a method that
moves our asteroids.

 The basic idea is to have them all turn to face
the fighter and then rotate a slightly
additional amount to the left or right.

* Then, they fire at a random speed and
distance until they stop, where they turn to
face the fighter again and the process restarts.

Asteroid Movement

* Pick any random icosahedron and drag in
three methods:
— A “turn to face” the fighter. Set duration to 0.
— A “turn left” with any distance. Set duration to 0.

— A “move forward” with any distance and any
duration. Set style to abruptly.

icosahedron turn to face fighter duration = 0 seconds more...

icosahedron turn left random number minimum = -0.1 maximum = 0.1 more...

icosahedron move forward random number minimum = 150 maximum = 200 more...
duration = 0 seconds more...

style = gently duration = random number minimum = 30 maximum = 70 more...

Randomizing Asteroid Movement

 Go to world=>functions.

* Drag a “random number” onto both distances
for the “turn left” and “move forward”. Also
drag one on to the duration of “move forward”.

m = LT B X Events | create new even(l
RS camera
(23 light
) ground
) fighter

) icosahedron

) icosahedron3
Q icosahedron4
) icosahedron2
la icosahedron5
) icosahedron6
) icosahedron?
) icosahedrons
) icosahedron9

A AR LLLL S wunmiuL.LurrSitayriray
Begin: Nothing
During: ~world.gamePlay

End: Nothing

While world.currentlyPlay
Begin: Nothing
During: ~world.checkCol

End: Nothing

When Space] is typed

@ world.my first method | @ world.laserShot

world.asteroidMovement2 No parameters

@ world.gamePlay

world's details

fproperties rmethods]’func(ions No variables

| create new functions I ' icosahedron turn to face fighter more...
—| boolean logic .)
— 9 icosahedron turn left 0.25 revolutions more...
not a
both a and b icosahedron move fedward 0.5 _meters duration_= 0.25 seconds s

either a or b, or both

< b

==b
=/ random
choose true probak#:
random numbe
(—|] string
a joined with b

what as a string

Do in order Do together If/Else Loop While For all in order For all toget

Randomizing Asteroid Movement

e Set the random number’s maximums and
minimums by clicking on the purple arrow to
the right of “random number”.

e Set the values to the following:

Turn Left Distance -0.1 0.1
Move Forward Distance 150 200
Move Forward Duration 30 70

Parameterizing Asteroid Movement

We want to make this method more flexible —
not just for one asteroid, but for all asteroids.

We're going to use a parameter so we can tell
this method to work on any asteroid.

Make sure you have “asteroidMovement”
pulled up in your code editor and click on
“create new parameter” in the top-right
corner.

sthod [@ world.asteroidMovement

nt [oviasteroid

create new parameter

create new variable

ace fighter — duration = 0 seconds ~ more...

t “random number minimum = -0.1 maximum = 0.1 more... duration = 0 seconds more...

rward “ random number minimum =150 ~ maximum =200 ~ more... style = gently — duration = random number minimum =30 — maximum =70 ~ more... more...

er “If/Else Loop :While ‘Forallin order For all together Wait : print
.|

Parameterizing Asteroid Movement

®) O Create New Parameter

* A box will pop up. Name: [3steroid
Name the parameter | © —
“asteroid”. ® Object

) Other...

* Click on “object”.)
make a |List |w
¢ Clle ”OK”- OK Cancel

Parameterizing Asteroid Movement

* You should notice Faseria appear next to the
name of the method.

* |[n your method, wherever “icosahedron”
appears, you should drag in the [asterid

inStead, I @ world.my first method |Q worId.asteroidMovement-

world.asteroidMovemen) asteroid

No variables

asteroid o face fighter duration = 0 seconds more...

asteroid rn left random number minimum = -0.1 maximum =

asteroid move forward random number minimum = 150 maxim

Putting It All Together

Now we’re going to write a method that
makes all of the asteroids move at once.

Pretty simple: go to world->methods and
create a new method. Name it “gamePlay”.

Drag in a do together.

Inside the do together, drag in thirty copies of
the “asteroidMovement” and pick a different
icosahedron for each copy.

Your Method Should Look Like This:

world.asteroidMovement asteroid = icosahedron20
world.asteroidMovement asteroid = icosahedron2

world.asteroidMovement asteroid = icosahedron25
world.asteroidMovement asteroid = icosahedronl3
world.asteroidMovement asteroid = icosahedron26

world.asteroidMovement asteroid = icosahedronl2

wmwnrld acrtarnidlMaviamant actarnid — irncahadenann

Check Collisions

* This is going to be the biggest method we
write. It’s going to check to see whether all
the objects in the world are colliding with the
fighter or the laser.

* To start, go to world->methods and create a
new method named “check Collisions”.

* Dragin a “for all together” and select
“asteroidsList”. Drag in 2 “if” statements into
the “for all together”, one after the other.

world.checkCollisions2 No parameters

No variables

- [=] Forall world.asteroidsList — , every [obi|item_from_asteroidsList together

= If true

(Do Nothing
Else

(Do Nothing

= If true

(Do Nothing
Else

(Do Nothing

Check Collisions

* |n our first“if” statement, we
want to check three things:

— |Is the laser not attached to

the ﬁghter? (HaS |t been ~! For all world.asteroidsList , every }E\ item_frc
ShOt?) ~| If both true and true
— |Is the laser touching the (Do Nothing
asteroid? Else
— Is the asteroid visible (has it 0o Nothing
not already been hit)? = If true
* We need to use a logic oo
function to check three (Do Nothing

things at once. Go to
world->functions and find
“both a and b”. Drag it on to
“true” in the first “if”
statement. Pick “true”.

Check Collisions

* Now we want
to add in
another “both
a and b” so
we can check
three things.

* Drag another
“both a and
b” onto the
first true in
the
statement.

i) 'cosanearons
|a icosahedron9

world's details

properties rmethods rfunctions

create new functions

(=] boolean logic
not a

both a and b| =" |

@ world.my first method [@ world.checkCc

world.checkCollisions2 No parameters

No variables

either a or b, or both

(=] math
a==>b

a<=b
(=] random
choose true probabilityOfTrue

random number
(=] string
a joined with b

~what as a string
4 Il

[~/ For all world.asteroidsList

= If

both ue and

, every l@! item_{

true

(Do Nothing

Else

(Do Nothing

= If true

(Do Nothing

Else

(Do Nothing

Do in order Do together ' If/Else

Loop While :F¢

Check Collisions

* How do we know if two objects are touching?

— Answer: If the distance between the two is less than
the width of one of the objects.

— Think about that for a second. Do you understand

why this is?
* We're going to use our statements to check three
things:

— |Is the laser not attached to the vehicle?
— |Is the laser touching the asteroid?
— |Is the asteroid visible (has it not already been hit)?

Check Collisions

* First Condition: Is the laser not attached to
the ship?
— Go to the “Laser” object you made out of the flag
and go to “properties”.
— Drag in the laser’s “vehicle” on to the first value.

— A menu should pop up. Select “laser.vehicle ="
and then select “fighter”.

Lainicia
light
ground

Q icosahedron22 UL AN EVE | osahedron

laicosahedronZB icosahedron18 L
Qicosahedron24 icosahedron8 , do world.my first method
icosahedron29
Qicosahedronzs icosahedron28 o
Qicosahedronzs icosahedron27 SRR
QicosahedronZ? !cosahedronlg
- icosahedronl7 yPlaying is true
Qlcosahedronzs IensahedronT
DicosahedronZQ icosahedron21
i hedronll
IaicosahedronBO RosRaecn lePlay
icosahedron22
icosahedronl10
icosahedron6

I ADD | icosahedron30 yPlaying is true
0BJECTS { .
| icosahedron23

icosahedronl6 —
icosahedron9 .checkCollisions2

Q asteroids2

() Dummy Objects @ world.my first method [@ world.checkCg

world.checkCollisions2 No parameters icosahedron24
Laser's details icosahedronl5
, icosahedronl4
[properties fmethods rfunctions No variables icosahedrons
create new variable =] For all world.asteroidsList every [obi item | !cosahedronzo sther
= : » Every [- icosahedron2 :
icosahedron25
capture pose =l 1f both both Laser.vehicle == » icosahedron13
| SETTTTITIIEE icosshedronzs
lor = (Do Nothing ' icosahedron12
co’or) = Else icosahedron3
opacity = 1 (100%) (Do Nothing icosahedron4
Dummy Objects »
vehicle = fighter = If true You Lose
. . Laser >
skin texture = <None> (Do Nothing 3D Text
Else asteroids2
fillingStyle = solid (Do Nothing _
expressions S

pointOfView = position: 0.02, -0.01,

isShowing = false

Check Collisions

 Second Condition: Is the asteroid invisible?
(Has it already been hit)?

— Pick any icosahedron in your object tree. Go to its

properties and drag in “isShowing” on the second
“true”.

— Instead of the individual icosahedron, we want it
to check all of the items in the list. Drag in
“item_from_asteroidsList” at the top of the “for
all together” to the icosahedron.

g usanEuIvna v v - —

Q icosahedron16

@ world.my first method | @ world.checkCollisions [@ world.checkCollisions2
icosahedronl? v

world.checkCollisions2 No parameters

icosahedron14's details

properties [methods [functions No variables

| create new variable | - [=] Forall world.asteroidsList — , every |obi item_from_asteroidsList

S liE both both Laser — .vehicle 1= fighter

_from_asteroidsList .isShowing

anc

color = - (Do Nothing /
opacity = 1 (100%) ¢ [Else

(Do Nothing
vehicle = world 3
= If true
skin texture = ground.MoonTexture " (Do Nothi
fillingStyle = solid e
(Do Nothing

pointOfView = position: =35, -0.9)
isShowing™ true
Seldom Used Properties

Sounds
Texture Maps

> Do in order Do together “If/Else Loop While “Forallin order ‘Forall together = Wait print

both

Check Collisions

* Third Condition: is the laser touching an asteroid?

— Go to Laser’s functions and drag in an “is within
[threshold] of” to the last “true”.

— In the drop-down menu that will pop up, pick any
icosahedron and any distance.

— Drag in item_from_asteroidsList to the icosahedron.

— Go to the icosahedron’s functions and drag in “width”
where the distance is.

— Drag in item_from_asteroidsList to subject =
icosahedron

both Laser is within ~ (subject = item_from_asteroidsList 's width /1) of item_from_asteroidsList

Check Collisions

* Now we’re going to move into the second “if”
statement.

 We're going to make a copy of our first “if”
block because this one will be very similar.

* Drag the first if block to the clipboard to make
a copy. Drag in a copy just underneath the
first “if” block within the “for all together”.

Your Code Should Look Like This

world.checkCollisions2 No parameters

No variables

= For all world.asteroidsList , every |ﬂ| item_from_asteroidsList together

= If both both Laser

. vehicle 1= fighter

and

item_from_asteroidsList

.isShowing

and

Laser

(Do Nothing
Else

(Do Nothing

=l of both both Laser

. vehicle 1= fighter

and

item_from_asteroidsList

.isShowing

and

Laser

(Do Nothing
Else

(Do Nothing

Do in order ‘Do together “If/Else Loop

While

For all in order

For all together

Wait

print

Check Collisions

* |[n “[Laser] is within [subject =
item_from_asteroid]’s width...” change
“Laser” to “fighter”

* Remove the condition that says “Laser.vehicle
== fighter” by dragging it to the trash. There
should be a “true” value where it was. This is

OK.

Your Code Should Look Like This

[I5€
' Do Nothing
f both both fighter is within (subject = item_from_asteroidsList 's width /1

Continued, in the same line...

of item_from_asteroidsList and true and item_from_asteroidsList .isShowing

myFirstMethod

* Go to world.myFirstMethod.
* Dragin “world.resizeAsteroids”

* Go to world—2>properties and drag in
currentlyPlaying. Set its value to “true”.

@ world.my first method | @ world.checkCollisions | @ world.youlLose

world.my first method No parameters
No variables

world.resizeAsteroids

world.currentlyPlaying set value to true duration = 0 seconds more...

Events

* Go to Events in the top-right corner of the
screen.

 There should already be one that says “when
world starts, do world.myFirstMethod”.

* Create a new event. Pick “let arrow keys move
subject”. Select “fighter”.

Events

Create two events “while something is true”. Pick
“world.currentlyPlaying” for the ‘something’.

In the first “while” event, drag in “gamePlay” to
the “during”.

In the second “while event, drag in
“checkCollisions” to the “during”.

Create a last event — “when a key is typed.”
Select space and then drag in “world.laserShot”.

When the world starts, do ~world.my first method

T
Let —l move fighter
d (R0 fd
While world.currentlyPlaying is true
Begin: Nothing
During: ~world.gamePlay

End: Nothing

While world.currentlyPlaying is true

Begin: Nothing

During: ~world.checkCollisions

End: Nothing

When Space| is typed, do world.laserShot

Challenges

* Can you create a score object that counts the
number of asteroids that have been hit?

e Can you create a billboard with instructions
for the game? Can you make it disappear
when the game starts?

* Can you create 3D text that appears when you
win or lose that tells you whether you’ve won
or lost?

