
Honors College Thesis

Submitted in partial fulfillment of the requirements for graduation from the
Honors College at Adelphi University

”Zero Knowledge Proofs”

Arfan Rasheed

Kees Leune

Sean Bentley

Sixia Chen

May 2024

Abstract

In this paper, I introduced Zero Knowledge Proofs, or ZKPs, an emerging topic

in cryptography. ZKPs can change the way authentication systems are used

by removing server sided hashed passwords and usernames allowing increased

privacy to users. My research was conducted through an incremental quasi-

structured literature review. I introduced some examples of ZKPs found in

literature. In this paper, I sought to answer the question of — what kind

of challenges do zero knowledge proofs provide a better solution than tradi-

tional approaches in the context of web and mobile applications? Through this

question, I created an experiment in which I tested and altered Slawomir’s (Gr-

zonkowski et al.) authentication method. Based on my findings, I then reviewed

the current state of Zero Knowledge Proofs. I found that ZKPs, as of now, are

not suitable for replacing traditional methods of user authentication as they still

rely on shared secrets.

2

Contents

1 Introduction 5

1.1 Research Question . 5

1.2 Methodology . 6

1.3 Structure of this Thesis . 6

2 Background 7

2.1 Cryptography . 7

2.2 Message Authentication . 8

2.3 Zero Knowledge Proofs . 9

2.4 Examples . 12

2.4.1 Peggy and Victor’s Cave 12

2.4.2 Graph Isomorphism . 13

2.4.3 3-colored graph . 14

2.4.4 Fiat-Shamir Identification Protocol 16

2.5 Applications . 17

2.6 Background Summary . 18

3 Experiment 19

3.1 Analysis . 19

3.2 Altered Algorithm . 24

3.3 Experiment Summary . 25

4 Conclusion 26

3

4.1 Future Work . 26

List of Figures 28

Bibliography 29

4

1 Introduction

Cryptography is a part of cyber security, in which it attempts to provide a de-

fense for message interception. Some key principles are privacy, authentication,

signatures, minimality, simultaneous exchange, and coordination (RIVEST, 1990).

It is important that while a message is secure and gets to another person, we can

ensure the message came from the intended source, information was not leaked,

has only the intended information, and is secure even if leaked. This presents

some challenges that make modern-day cryptography important to society, as

secure communication and privacy are vital. Cryptography tends to rely on

the concept of shared secrets, in which some key information is exchanged be-

tween two parties that allows for authentication later. For example, Alice and

Bob (common names in cryptographic exchanges, can also be denoted as A and

B) will have a secret password they can use to ensure the identity of one an-

other. Zero Knowledge Proofs intend to circumvent this notion of shared secrets

(RIVEST, 1990).

1.1 Research Question

Zero knowledge proofs are an emerging cryptography topic that can be used for

message authentication applications and information privacy. A zero knowledge

proof is applied through a confirmation system in which a prover can prove

knowledge of some information to a verifier without telling the verifier that

exact information. This allows message authentication where a party can show

they have a message without revealing it to a corresponding one. From that I

derived the research question: in the context of web and mobile applications,

what kind of challenges do zero knowledge proofs provide a better solution than

5

traditional approaches?

1.2 Methodology

My methodology will use an incremental quasi-structured literature review, in

which I will develop sub-questions about zero knowledge proofs from my initial

question. After this review, I will conduct a gap analysis in the current literature

to formulate a hypothesis that can be tested. Following the hypothesis, I will

develop and execute an experiment to test and confirm something previously

proven in the literature review or test a new idea based on a gap in existing

literature. After conducting my experiment, I will analyze my findings and

conclude the experiment answering my initial question and other sub-questions

created during my research process.

1.3 Structure of this Thesis

This thesis will follow a format starting with background on ZKPs. Then, I will

define what a ZKP is in-depth and some important clauses they must adhere

to. Following this will be the first implementations of ZKPs and some examples

of methods in which ZKPs are used. Then, there will be a brief introduction

of Non-interactive ZKPs which showcase some applications of ZKPs in today’s

world. After that, an overview of web authentication and my experiment regard-

ing Slawomir, followed by the analysis of my findings, conclusion, and thoughts

on future work.

6

2 Background

2.1 Cryptography

As denoted in Section 1, cryptography deals with secure communication between

two parties with the knowledge of a possible third party working against them.

An important part of cryptography is the authentication of a party. A party

should be able to prove its identity to another party since information from

an unauthenticated party cannot be trusted. This extends into the web, as

generally before entering most websites, a user can create an account. This

account contains a username and password that can be used to authenticate a

user later, allowing them to access information that only their account would

have.

Dwivedi et al. (2021) defines a series of cryptographic attacks that have to

be considered when creating a cryptographic algorithm. Direct attacks are

attacks that have physical access or proximity to a device. Active attacks are

attacks that require interaction in an attempt to impersonate a user. Denial-

of-service attacks are attacks that make a system unavailable. Passive attacks

are attacks that rely on observing or tapping, which allows an attacker to gain

information on a user. Brute force attacks can be split into three different

types, targeted attacks, trawling attacks, and blind attacks. Targeted attacks

are dictionary-based attacks for guessing passwords, where an attacker will enter

a large amount of passwords in an attempt to gain access. Trawling attacks are

attacks that take a specific password and guess usernames instead of passwords.

Blind attacks are where a username and password are both guessed.

7

Figure 1: Classical Web Authentication (Grzonkowski et al., 2008)

2.2 Message Authentication

Web authentication can be achieved through many methods such as HTTP

(Hypertext Transfer Protocol), HTTP digest, and most commonly HTTPS.

HTTP gives servers credentials in readable form but not as plaintext. HTTP

digest allows the server to impersonate the user but is not a serious problem for

noncommercial businesses (Grzonkowski et al., 2008). HTTPS is in widespread

use today and is more secure as it uses asymmetric cryptography. This means

that public and private key is used for security. Asymmetric cryptography with

digital certificates allows for a safer protocol overall (Grzonkowski et al., 2008).

The classical way to authenticate a user, indicated in Figure 1, is by entering

a pre-established username and password and the browser authenticating it.

Sometimes the verification step will be unsuccessful yet the browser will let the

user have access to the site which can be an issue.

Some existing examples are presented by a simple challenge-response as imple-

mented by Yahoo!, but this is ineffective, as it uses an insecure algorithm, MD5.

Password-authenticated key exchange, or PAKE, uses short passwords memo-

8

rized by the user (Grzonkowski et al., 2008). PAKE is safe against man-in-the-

middle attacks and eavesdropping as it uses a shared password (Dwivedi et al.,

2021). A subclass called encrypted key exchange, or EKE, combines asymmet-

ric and symmetric encryption (Grzonkowski et al., 2008). Simplified Password-

authenticated Exponential Key Exchange, or SPEKE, is used for commercial

purposes. Secure Remote Password, or SRP, is another solution, however, it is

vulnerable to dictionary attacks (Grzonkowski et al., 2008).

2.3 Zero Knowledge Proofs

Zero Knowledge proofs at their core are meant to produce a scenario in which

no (malicious) verifier can get any extra information from the proof procedure,

except the correctness of the statement. Zero knowledge proofs must satisfy two

conditions, completeness and soundness (Wu, 2014). Completeness equates to,

if a statement is correct, a verifier will always accept it, or in a proof system for

a set S of possible actions for a user “for every x ∈ S, the verifier always accepts

after interacting with the prover on common input x” (Mohr, 2007). Soundness,

on the contrary, is that if a statement is incorrect, a verifier will always reject

it, or “for some polynomial p, it holds that for every x /∈ S and every potential

strategy P ∗, the verifier rejects with probability at least 1
p(|x|) after interacting

with P∗ on common input x”, where the strategy is a probabilistic polynomial-

time strategy (Mohr, 2007).

A ZKP is complete when an honest prover always convinces an honest verifier.

A ZKP is sound when a cheating prover can convince an honest verifier a proof

is true with a very small probability. Another definition is “A strategy A is

zero-knowledge on (inputs from) the set S if, for every feasible strategy B∗ there

exists a feasible computation C∗ so that the following two probability ensembles

9

Figure 2: Turing Machines GMR (Goldwasser et al., 1985)

are computationally indistinguishable: the output of B∗ after interacting with

A on common input x ∈ S [and] the output of C∗ on input x ∈ S” where the

computation C∗ is derived from the strategy B∗(Mohr, 2007). The strategy in

these problems deals with the prover’s attempts to prove a statement, while the

computation deals with the verifier’s ability to confirm that statement to be

true.

Dwivedi et al. also defines the basis of a ZKP protocol as a user makes a com-

mitment where they choose a random value from a set that cannot be changed,

a challenge where a query is sent to the user, and a verification where the user’s

response to the query is validated.

Zero knowledge proofs initially were defined in an article by Goldwasser et al.

(1985) (GMR), which is referenced in many research papers on the topic, in

which all participants are considered to have infinite computing power, and the

object that they try to ”know better” is not public input. For example, we

can take a coin toss where not everyone knows which side the coin has landed,

and those who do not know have to guess. Knowledge is a notion relative to

a specific model of computation with specified computing resources and one

10

Figure 3: Turing Machines Feige, Fiat, and Shamir (Fiege et al., 1987)

studies and gains knowledge about available objects (Goldwasser et al., 1985).

Their process uses two Turing machines taking turns computing using random

tapes, work tapes, an input tape, and communication tapes as seen in Figure

2. The W refers to writing and the R refers to reading in the figure. The

prover is exponential-time and the verifier is polynomial-time, in which A’s

read-only is B’s write-only and vice versa. A is the prover and B is the verifier

in Figure 2. These machines interact with one another through turns and send

messages to each other determined by the random tape. As Turing machines

are computational devices, A can prove to B knowledge of some information

through a series of computations sent to one another. Essentially this shows the

main differentiation between a ZKP and a traditional approach as ZKPs use

repetition to prove an idea, while traditionally messages are sent once to ensure

security. (Goldwasser et al., 1985)

The Feige, Fiat, and Shamir piece takes the original GMR take on ZKPs a

bit further in which the prover and verifier are no longer infinitely powerful

in terms of knowledge complexity. For their Turing machines, there are two

communication tapes, two private work tapes, and two private random tapes,

as seen in Figure 3. There is also a private oracle tape S, which is only read by

11

Figure 4: Peggy and Victor’s cave (Mohr, 2007)

the prover. This tape is used when a clause is satisfied. For example, the clause

could be a specific formula being satisfied or a valid 3-color graph coloring.

In addition, there is more complexity (not shown in Figure 3) as there are

crooked versions of A and B who are dishonest. Crooked A does not know the

information but is trying to fake knowledge while Crooked B is trying to gain

more knowledge about the information that is not necessary for the proof. Fiege

et al. asserts that only a straight A can convince B to accept correct inputs

while a crooked A cannot. This proof is later expanded to an identification

scheme is a protocol that enables party A to prove his identity polynomially

many times to party B without enabling B to misrepresent himself as A to

someone else. This allows proof of identity without someone being able to steal

identities which can be vital in increasing personal privacy (Fiege et al., 1987).

2.4 Examples

2.4.1 Peggy and Victor’s Cave

As shown in Figure 4, the classic example of a Zero Knowledge Proofs is Peggy

(commonly the prover in cryptographic examples) and Victor’s (commonly the

verifier in cryptographic examples) cave (Mohr, 2007). The cave has a magic

door that opens upon entering a secret word. Peggy has discovered the word

12

Figure 5: Graph Isomorphism (Mohr, 2007)

and Victor is willing to pay Peggy for the word but he has to be sure that

Peggy does know the word and Peggy wants to show Victor she knows the word

without revealing it. Peggy chooses a path to go down and Victor chooses her

path of return, and with enough attempts, Victor can tell without doubt that

Peggy knows the secret word, as if she chooses to go down path A and has to

return path B, she must know the word. There are multiple trials to lower the

probability she returns along the path that she had traveled. Victor’s chances

of overhearing her saying the secret word are also reduced by the fact that he

does not know the path she has traveled. This example is the prime example of

ZKPs when used to describe its basic functionality.

2.4.2 Graph Isomorphism

As shown in Figure 5 another example of ZKPs is through the use of graph

isomorphism (Mohr, 2007). An isomorphic graph contains the same number of

graph vertices mapped in the same way. The graph on the left has the same

mapping of edges as the graph on the right. If we relabel the vertices as shown

in the equations on the right of Figure 5, we will see that vertex 1 connects

to vertex 2 and vertex 3 on both graphs. It is important to note that if G1

13

is isomorphic to G2, and G1 is isomorphic to G3, G2 is also isomorphic to

G3. The prover will generate a graph H from two isomorphic graphs G0 and

G1, where H is a random isomorphic copy of G1. The verifier then sends the

prover a random α ∈R {0, 1}. If the α is 1, the prover sends π, the symmetric

group of |V | elements, to the verifier or π multiplied by the isomorphism. If the

permutation is not an isomorphism between α and H, the verifier rejects it.

This example can be shown by trying to prove two graphs are isomorphic to one

another. First, we assume that two graphs have an extremely large number of

nodes to the point where it cannot be determined by eye that these graphs G1

and G2 are isomorphic and a prover is attempting to show a verifier that these

graphs are isomorphic and that he knows their permutation without showing

them how they are isomorphic. The prover can send a permutation of one of

the graphs, or graph H, and save the permutation π. Then the verifier picks

an integer, t, which can be a 1 or 2 with equal probability. The prover will

send π−1 : H → G1 or f ◦ π−1 : H → G2 yielding Gt. Since the permutation

is isomorphic to the G1, the verifier can then check if Gt is isomorphic to H,

which will prove that the original graphs are isomorphic through multiple tests,

as eventually a permutation of G2 will be tested (Kun, 2016).

2.4.3 3-colored graph

Figure 6 is the graph three colorability problem (Mohr, 2007) which works for

all languages in NP, nondeterministic polynomial time. NP is a set of decision

problems that are verifiable by deterministic Turing machines and solvable by

nondeterministic Turing machines. The way a three-colorability graph works is

that no adjacent vertices of the graph are the same color. The verifier chooses an

edge of a random 3-color graph with n locked boxes and sends it to the prover

14

Figure 6: 3-colored graph (Mohr, 2007)

who sends back keys to the adjacent vertices. The keys must open adjacent

vertices to the edge, and this process is repeated unless the keys do not match

the boxes or contents violate the conditions which then the verifier will stop and

reject the prover. This is done m2 times with m being the number of edges in

the graph.

A simpler way to put this protocol is simply through the use of a random color

map. A prover will create a large 3-color graph for the verifier. They will then

cover all vertices of this map and then give the verifier a choice of one edge

to pick. Once an edge is selected, the two adjacent vertices will be revealed to

show the verifier that they are two different colors. The prover will then recreate

the 3-color graph with different colors but in the same orientation and cover the

vertices. The verifier will once again challenge an edge to show that two vertices

are two different colors. This process will repeat over and over until the odds

that the color map is incorrect are negligible and the verifier is convinced. The

verifier will never be guaranteed to know if the map was correct but will be

confident in his decision and lack knowledge of the color map throughout the

process, as the colors will be in different places throughout the process giving

the verifier no ability to try to record and recreate the color graph (Green, 2017).

15

Figure 7: Fiat-Shamir Protocol (Mohr, 2007)

2.4.4 Fiat-Shamir Identification Protocol

The Fiat-Shamir identification protocol (Mohr, 2007) is another example of zero

knowledge proofs used for entity authentication as seen in Figure 7. Peggy can

prove to Victor that she is Peggy and has a secret s without revealing the secret

and proving she has it. A trusted middleman creates a similar scheme to an

RSA protocol in which n = pq and keeps the primes secret. An RSA protocol

normally uses a public and private key in which a private key can decrypt

messages encrypted by the public key. The prover will create a coprime to n,

such that 1 ≤ s ≤ n− 1 and create another number v, such that v = s2 mod n

will be used by the middleman as her public key. The prover will then send a

16

random number r, such that 1 ≤ r ≤ n − 1, and sends x = r2 mod (n) to the

verifier. The verifier then sends a bit e ∈ {0, 1} to the prover. The prover then

can compute a y where y = r when e = 0 and y = rs mod n. when e = 1. The

verifier will then reject if y = 0 or y2 ≈ x ∗ ve mod n (Mohr, 2007).

2.5 Applications

Wu and Wang (2014), introduce Noninteractive Zero Knowledge (NIZK) which

contains a message only from the prover to the verifier, forming essentially a

one-way implementation of ZKPs. This allows for cryptographic advances in

applications to Common Cryptographic Architecture (CCA, used for financial

transactions), security encryption, anonymous authentication, and group and

ring signatures.

Witness indistinguishability, a weaker version of ZKPs, is used for security in

some applications but is not as strong as ZKPs in terms of confidentiality. Using

a common reference string (CRS, the model generated by a trusted party), a

prover and verifier can complete a ZKP, however, the prover and verifier will

have to interact in the first place (Wu and Wang, 2014).

Dwivedi et al. introduces another authentication system based on ZKPs in-

tended for the Internet of Things (network of devices and technology that con-

nects devices to the internet), IoTs, and specifically used for healthcare but can

be used in other fields. The registration protocol uses a UID (user ID, a chosen

username or email address), a SID (server ID), or a QR code containing the

UID and server domain name, and a URL given to the user to create a master

password. x is created from a hash of the UID, SID, and master password. A

public parameter v = gx is also created from the application, where g is an arbi-

17

trary variable created in the application that is unknown to the user. The user

registers with v and their UID. To authenticate a user, they send in their UID

which gets matched with the v parameter. This is then used in a computation

with the master password as inputted to authenticate the user and then redirect

them to the page. This is used for Zero Knowledge Nimble, ZKNimble, which is

a block cipher of size 64. ZKNimble with permutation and substitution layers

followed by a round function to produce keys. This protocol implements NIZKs

to authenticate users (Dwivedi et al., 2021). Dwivedi et al. also introduces

Schnorr’s identification protocol, or SIP, which is secure against direct attacks

and eavesdropping (Dwivedi et al., 2021).

Soewito and Marcellinus (2021) creates a similar authentication method to

Dwivedi et al. (2021) that uses Advanced Encryption System (AES) instead

of the ZKNimble procedure to create a privacy algorithm with ZKP as authen-

tication and AES as data encryption. (Soewito and Marcellinus, 2021).

2.6 Background Summary

In this chapter, I introduced the basis of cryptography, message authentication,

and ZKPs. I introduced three examples of ZKPs: Peggy and Victor’s cave, graph

isomorphism, 3-colored graphs, and the Fiat-Shamir Identification Protocol. I

also introduced a key factor of ZKPs that differentiates them from traditional

cryptography — the repetition of a process to increase the likelihood of it being

true, rather than a single process used. In addition, I established some applica-

tions of ZKPs that are currently being used today. Next chapter, I explain my

experiment dealing with Slawomir’s algorithm in web authentication.

18

3 Experiment

In this section, I go through the algorithm devised by Slawomir. I also revised

his algorithm to make it function properly, as in its current state it would not

work in practice.

3.1 Analysis

Grzonkowski et al. (2008) proposes a new method of authentication using ZKPs,

as shown in Figure 8, which uses a private key algorithm. The private key goes

through a SHA1 hash algorithm and is altered through a permutation algorithm

leaving it as some value of akk! such that k is a natural number. For example, the

number 159 can be written in this form as (1)5! + (1)4! + (2)3! + (1)2! + (1)1!.

This can be done as a browser extension or a script, in which a script has

to have server trust while a browser extension is browser dependent. There

is also the precondition that the site is free of XSS, or cross-site scripting,

vulnerabilities. The protocol is secure from graph isomorphism attacks as with

a large square matrix brute force attacks are rendered less effective and the

graphs are completely random. Dictionary attacks can be slowed down and

detected using captchas as well (Grzonkowski et al., 2008).

Through the use of ZKPs, the browser can directly interact with a web server in

which a user’s password never has to leave the browser. The browser will use a

user’s public and private key pairs in combination with a user’s password. The

server and the browser will interact and use challenge graphs to determine if the

user has inputted the correct password as shown in Figure 8. This, however, still

leaves the username open, which makes this similar to a public key exchange

19

Figure 8: Slawomir’s Authentication (Grzonkowski et al., 2008)

20

Convert (number)
var i := 0
var f a c t o r := 0
var a [] := newArray ()
whi l e number > 0 do

f a c t o r := Grea t e s tFac t o r i a l (number)
a [i] := number/ f a c t o r
number := number − a [i] ∗ f a c t o r
i = i + 1

end whi le
re turn a

Figure 9: Slawomir’s Convert 1

system (Grzonkowski et al., 2008).

The main algorithms and processes tested were that of Slawomir. Slawomir was

attempting to use the graph isomorphism approach to prove a user’s identity

to the server with the browser creating graphs and the server challenging them.

This method would work by the challenge graphs of the server proving that the

graphs from the browser were indeed isomorphic and that the browser knew the

permutation to create a second graph from the first, which is derived from the

user’s password therefore proving the user’s identity.

I attempted to follow Slawomir’s algorithms and recreate this process as a sec-

ondary test. When reading through Slawomir’s algorithm 1 (as seen in Figure 9),

which used a converted secure hash from a user’s password, I realized that this

algorithm would not work. The first issue was with the GreatestFactorial

method, which looked for the smallest factorial greater than a given number.

From this method, I arrived at two distinct answers, that the number gener-

ated was the factorial, for instance, 3! = 6 where the number would be 3 or the

number would be 6. This is where the issue arises, as using the number 5 and

running it through the algorithm, we have an issue if the method returns 3, as

21

2ndConvert (a [])
var n := lengtha
var s := f u l l (n) { s t r u c tu r e with i n t e g e r s 0 , 1 , (n−1)}
var a [] := newArray ()
f o r i = 0 to n − 1 do

s . i n s e r t (i) { I n i t i a l i z i n g our temporary s t r u c tu r e }
end f o r
f o r i = 0 to k − 1 do

permutation [i] := s . elementAt (a [i]) { g e t t i n g
an element at a c e r t a i n po s i t i o n }

s . remove (a [i]) { removing the taken element }
end f o r
re turn permutation

Figure 10: Slawomir’s Convert 2

the number will end up as 0 by the second iteration. If we take if the method

returns 6, we will end up with an infinite loop as the number does not lower

and the integer division yields 0. Therefore the GreatestFactorial would not

work as intended as it takes numbers larger than the number inputted rather

than numbers smaller leading to an array that would not work. I attempted to

correct this method GreatestFactorial to instead return the largest factorial

less than a given number, which would then generate an array as I assume was

intended by the algorithm.

Figure 10 was a much harder algorithm to follow, as lengtha would not work

and should be denoted as length(a). The structure full(n) was an ambiguous

one which was interpreted as an empty graphical structure as shown in Figure

11. This structure was not defined well by Slawomir, as it says it is a structure

with integers from 0 to n − 1. full(n) was then filled with integers again

ranging from 0 to n − 1, which raised the confusion of whether the structure

should be filled or not. After this, Slawomir then creates a new array, a[] which

is fine other than the fact that it would wipe out the input of the array a[],

22

Figure 11: Slawomir’s Scaffolding

23

de f randomConvert (number : i n t) :
random . seed (number)
a = [−1]∗ (41)
counter = 0
whi le (a . count (−1)>0):

num = random . rand int (0 , 41)
i f (a . count (num)<1):

a [counter]=num
counter+=1

return a

Figure 12: Random Seed

later leading to the second for loop not working at all.

Figure 11 attempts to follow the process of the second algorithm by filling the

structure and then creating a permutation structure based on the a[]. This

is then shown in the form of an adjacency matrix. The first row and column

represent the vertexes of the graph. The zeroes in the matrix represent the

lack of an edge between the two vertices while the ones represent an edge. The

glaring issue when trying to implement this as code is the indices. As the

indices of the array get removed to prevent two of the same numbered points

from existing in multiple positions, the array becomes too small leading to an

index out-of-bounds error. For instance, if we take a[] from Figure 11, as we

remove indices, the array becomes shorter and if we try to access an index that

is no longer in the array, this will lead to an error.

3.2 Altered Algorithm

Through the process of using these two algorithms and attempting to implement

them, it seemed that they were password-deterministic, which led to the idea

of abandoning both of these algorithms and instead opting for a different route

24

de f inversePermutat ion (a : d i c t) :
perm = d i c t ()
f o r key in a :

perm [a [key]] = key
return perm

Figure 13: Inverse Permutation

that used the password to generate a permutation array similarly to that of

Slawomir, which was through the use of a random number generator. The

password would be converted into a secure hash as before, however, this number

would be entered into a seeded generator which would create a list of entries such

that the entries were randomly assorted and unique, as denoted by Figure 12.

This list would then be used as a permutation on a randomly generated graph

to create an isomorphic graph which could be tested for isomorphism. Using the

networkx library, these graphs can be tested for isomorphism, and permutations

to these graphs can be applied to create new isomorphic graphs. This allows

a simulation of a server creating random graphs and sending them back to the

browser, which the browser can then send the inverse permutation back as noted

in Figure 13. This is important, as an inverse permutation generated as noted

in Section 2.4.2, can be used to prove the graphs are isomorphic and will not

give a verifier the permutation to get from G1 to G2.

3.3 Experiment Summary

In this section, I explained Slawomir’s algorithm and went through it step by

step. I pointed out the critical errors that would prevent his algorithm from

running and then altered it with a new method based on a random seed number

generator. In the next section, I will conclude this paper and address future

work.

25

4 Conclusion

Zero knowledge proofs fundamentally require zero knowledge and a glaring issue

with the methodology used for the authentication of mobile and web applications

is an initial secret. Unless a user can initially prove their identity, a server will

have no identity to even check against in the first place resulting in a lack of

access. A user must initially create their username password paired key to even

start the process of authentication in the model described which leads to it

being an overdone attempt at public key exchange. Although this can increase

the complexity behind such a method, it fails at achieving the core concept of

zero knowledge. Shared secrets remain prevalent in ZKPs, however, the idea of

multiple trials to prove something is a new concept to cryptography. I concluded

that in its current state, in addition to lacking documentation and articles that

had a strong methodology, ZKPs are not a better method than classic web

authentication.

4.1 Future Work

The random seed method, while applying Slawomir’s algorithm in a method

that could work, reached the same issue of initial identification. However, I

thought of a new idea of generating the graph from the username of the user

and using the password as the permutation. A user could be identified through

their graph and permutation graph, while the permutation itself was still a

secret. This process is not perfect, as it is unclear whether this method would

be secure as the graphs would always stay the same. The same graphs create

some possible issues from brute force methods to gain someone’s username or

password. Analysis of this method is something that can be looked into in the

26

future to see if the trade-off of a less secure method in terms of graphs being

the same would be worth the initial proof of identity to be implemented.

27

List of Figures

1 Classical Web Authentication (Grzonkowski et al., 2008) 8

2 Turing Machines GMR (Goldwasser et al., 1985) 10

3 Turing Machines Feige, Fiat, and Shamir (Fiege et al., 1987) . . 11

4 Peggy and Victor’s cave (Mohr, 2007) 12

5 Graph Isomorphism (Mohr, 2007) 13

6 3-colored graph (Mohr, 2007) . 15

7 Fiat-Shamir Protocol (Mohr, 2007) 16

8 Slawomir’s Authentication (Grzonkowski et al., 2008) 20

9 Slawomir’s Convert 1 . 21

10 Slawomir’s Convert 2 . 22

11 Slawomir’s Scaffolding . 23

12 Random Seed . 24

13 Inverse Permutation . 25

28

Bibliography

Dwivedi, A. D., Singh, R., Ghosh, U., Mukkamala, R. R., Tolba, A., and Said,

O. (2021). Privacy preserving authentication system based on non-interactive

zero knowledge proof suitable for internet of things. Journal of Ambient

Intelligence and Humanized Computing, 13(10):4639–4649.

Fiege, U., Fiat, A., and Shamir, A. (1987). Zero knowledge proofs of identity. In

Proceedings of the nineteenth annual ACM conference on Theory of computing

- STOC ’87, STOC ’87. ACM Press.

Goldwasser, S., Micali, S., and Rackoff, C. (1985). The knowledge complexity

of interactive proof-systems. In Proceedings of the seventeenth annual ACM

symposium on Theory of computing - STOC ’85, STOC ’85. ACM Press.

Green, M. (2017). Zero knowledge proofs: An illustrated primer. A Few

Thoughts on Cryptographic Engineering.

Grzonkowski, S., Zaremba, W., Zaremba, M., and McDaniel, B. (2008). Extend-

ing web applications with a lightweight zero knowledge proof authentication.

In Proceedings of the 5th international conference on Soft computing as trans-

disciplinary science and technology - CSTST ’08, CSTST ’08. ACM Press.

Kun, J. (2016). Zero knowledge proofs - a primer. Math ∩ Programming.

Mohr, A. (2007). A survey of zero-knowledge proofs with applications to cryp-

tography.

RIVEST, R. L. (1990). Cryptography, page 717–755. Elsevier.

Soewito, B. and Marcellinus, Y. (2021). Iot security system with modified zero

knowledge proof algorithm for authentication. Egyptian Informatics Journal.

29

Wu, H. and Wang, F. (2014). A survey of noninteractive zero knowledge proof

system and its applications. The Scientific World Journal, 2014:1–7.

30

	Introduction
	Research Question
	Methodology
	Structure of this Thesis

	Background
	Cryptography
	Message Authentication
	Zero Knowledge Proofs
	Examples
	Peggy and Victor's Cave
	Graph Isomorphism
	3-colored graph
	Fiat-Shamir Identification Protocol

	Applications
	Background Summary

	Experiment
	Analysis
	Altered Algorithm
	Experiment Summary

	Conclusion
	Future Work

	List of Figures
	Bibliography

