
1

Graduate Thesis

Submitted in partial fulfillment of the requirements for

graduation from the Adelphi Master's Computer Science

Program

Automating Enterprise Cyber Threat Modeling

Christopher Benson

Dr. Kees Leune

Dr. David Chays

Sung Kim, J.D

Mike Fernez, M.S

5/13/2024

2

Abstract

Enterprises must keep their businesses safe from hostile actors,

regardless of size. Protecting an enterprise benefits from creating and

maintaining large-scale cyber threat models. Such models are potentially

extensive and may encompass large quantities of information necessary

for an enterprise's security. Based on a literature review, this thesis

proposes a methodology following the design science approach to help

ease the automated creation of such threat models. Paired with the

methodology, I designed and implemented a proof-of-concept to support

analysts to understand threats from adversaries better. The proof-of-

concept is validated based on a case study.

3

Table of Contents

Abstract 2

Table of Contents 3

1.0 Introduction 5

2.0 Research Objective 6

2.1 Research Methodology 7

3.0 Background 11

3.1 Enterprise Architecture 11

3.1.1 TOGAF Framework 13

3.1.2 ZFEA Framework 19

3.2 Threat Modeling 21

3.3 Enterprise Threat Modeling 28

4.0 Proposed Model 31

4.1 The Meta Layer 33

4.1.1 Purpose of Layer 33

4.1.2 Layer Elements 33

4.2 The Business Layer 34

4.2.1 Purpose of Layer 34

4.2.3 Layer Elements 34

4.3 The Application Layer 35

4.3.1 Purpose of Layer 35

4.3.2 Layer Elements 35

4.4 The Implementation Layer 36

4.4.1 Purpose of Layer 36

4.4.2 Layer Elements 37

5.0 Validation 39

5.1 Case Study 39

5.1.1 Authentication 40

5.1.2 Logging and Audit 42

5.1.3 Backups 43

5.1.4 Integration 43

5.2 Case Study Results 44

5.3 Business Layer in Case Study 45

4

5.4 Application Layer in Case Study 46

5.4.1 Application Services 47

5.4.2 Events 48

5.4.3 Channels 48

5.4.4 Application Layer Model 49

5.5 Implementation Layer in Case Study 49

5.6 Multi-Factor Authentication Model 52

6.0 Conclusion And Future Work 54

Bibliography 56

Appendix 62

Appendix A 62

5

1.0 Introduction

Cyber threat analysis (CTA) matches information about vulnerabilities in

an organization's current environment and determines potential cyber

risks. (Cyberthreat Analysis Tool - Identify Security Threats, n.d.) Once an

environment starts scaling up into an enterprise-level environment,

maintaining and analyzing all potential threats quickly becomes complex,

which can lead to mistakes. In the business world, a possible security

mistake can cause an enterprise to lose irrecoverable wealth and assets

(Morgan, 2022). In 2022, Suffolk County, NY, experienced a cyber attack

that crippled the county and forced the local government to rely

exclusively on pen and paper until the situation was resolved and systems

restored (Maslin, 2022). These types of attacks take months to occur, and

due to a lack of proper cybersecurity procedures, the response time for

critical civilian services was significantly impacted. A tool that could stay

current on the latest cyber threat vectors and help automate the creation

of CTA models for professionals to look over could help prevent or

mitigate the impact of such attacks.

It is important for organizations to stay up to date with their infrastructure

and to know the possible threats that can threaten it. This is increasingly

6

true with the technological world quickly moving to cloud services (IDG,

2020, 2) and the amount of data being transferred steadily increasing

every year (Duarte, 2023). When moving to the cloud, it might be a

common misconception that services will be more secure because they

are not on-premise. However, the lack of visibility will bring a lack of

foresight into how those systems operate and will make traditional

cybersecurity practices less effective (Leune and Kim, 2020). The

repercussions could be costly if the person in charge is careless or loses

track of what is included in their infrastructure. This research seeks to help

mitigate the problem and make securing an enterprise more manageable

and reliable.

2.0 Research Objective

This research aims to develop and evaluate software-based solutions that

generate and maintain CTA models for service-oriented enterprise models

(hereafter known as SOEM). The development of this tool will be used to

answer the following main overall goal of this paper: determine if CTA

models can be automated and maintained legibly with SOEM. The

following questions will be answered:

7

1) Are CTA models effective for SOEM? Many approaches to threat

modeling focus on software development rather than analyzing

operational service environments.

2) How beneficial would automation and maintenance of CTA models be

for SOEM? If not, what else can be done to help improve CTA for SOEM?

3) Does automatically creating and maintaining CTA models for SOEM

help improve overall cybersecurity situational awareness?

4) How readable are large-scale automated models?

2.1 Research Methodology

This thesis takes inspiration from a design science approach to develop a

prototype that will meet the requirements of the Research Objective. The

approach allows us to rapidly develop and test our prototype while

adhering to the research principles due to design sciences' reliance on

relevance, rigor, and the scientific method (Venable et al., 2014, p. 2).

This approach to conducting research will involve five steps, each of which

will lead to a working prototype that will help us answer this paper's topic:

How can service-oriented enterprise models be used to enhance CTA and

be created and maintained automatically?

8

Before listing the steps, it is important to understand what exactly design

science is. The design science approach relies on problem-solving, which

will help allow for innovative solutions, especially when applying this

approach to developing a tool that will enable us to answer the questions

presented in this paper (Brocke et al., 2020, pp. 3-4). To answer these

questions, a tool is needed, but since the tool does not exist, it needs to

be created. Due to the research aspect of this thesis, using a creation

method that coincides with research is a good option.

Figure 1

A model I made based on Brocke et al. (2020) showing the five steps being taken.

9

Referring to Figure 1, step one uses professional feedback from those

currently using CTA in an SOEM environment. It is important to gather

real-world data from the source to understand better what needs to be

implemented for our prototype. Step two is to derive clear objectives and

restrictions when developing the prototype. With the limited timeframe of

this thesis, I need to have a set of priorities and restrictions to derive

results from a working prototype. In step three, with our narrowed-down

goal and data from a real-world environment, software development will

heavily emphasize testing and refinement. During step three, I will

regularly demonstrate our work to end-users to gather their feedback on

the usefulness and functionality of the prototype. This will be the longest

phase, incorporating elements from steps one and two. Step four will

revolve around the finished prototype being tested in a professional

environment to gather professional feedback for possible refinement and

adjustments. Once this is done, the design science aspect of the thesis

will be completed, and the final step will be to present our findings in this

paper.

10

3.0 Background

Before creating the proposed model, it is important to understand the

fundamental pillars of Enterprise Threat Models and how they are applied

at the enterprise level. These pillars are Enterprise Architecture(EA),

Threat Modeling, and Enterprise Threat Modeling. Understanding EA and

Threat Modeling makes understanding enterprise threat modeling possible

because EA and threat modeling make up Enterprise Threat Models, as

will be explored in the following subsections.

3.1 Enterprise Architecture

Enterprise Architecture translates business vision and strategy into

effective enterprise change by creating, communicating, and improving the

fundamental principles and models that describe the enterprise’s future

state and enable its evolution (Behrouz, Fathollah., 2016). With these

models, the EA will represent an entire business with its constituents

(Rohloff, 2005). Designing EA only on the theoretical level does not allow

it to bring a more efficient use of Information Technology (IT) or help

achieve business goals faster; it needs to be an integral part of the

organization to be valuable and applicable (Dumitriu, Ana-Maria Popescu.,

11

2020). When implementing EA, taking the business side and IT is

important due to their importance in any enterprise and how they work

together. When a sudden change occurs, businesses must react quickly,

or they could be left behind. This is why EA helps an enterprise stay agile

and resilient even when a sudden change occurs (White, 2022).

EA in an IT environment ensures businesses understand how IT is

integrated with their enterprise. EA enables the leveraging of IT in a

business, helps communications between the business and IT sectors,

supports business goals, and can react quickly to market requirements

with fast scalability and growth (Rohloff, 2005). EA is also used within the

IT team for systems development, IT management, decision-making, and

IT risk management to eliminate errors, system failures, and security

breaches (White, 2022). From server upgrades, license assignments,

infrastructure upgrades, and account creation, every single task can be

coordinated at some level with the enterprise environment.

With EA, IT investments are also made easier due to a more precise

picture being presented and the benefits stated. Using EA with IT will also

provide the following benefits: (White, 2022).

1) Improve service orientation via APIs and the cloud.

12

2) Rationalize and less costly application portfolios.

3) Reduce the risk and cost of unsupported technology.

4) Improve information management and security.

5) Solutions to reuse existing IT assets.

6) Better performance and resilience.

7) Faster and more successful implementations and updates, and

better automation.

In general, EAs are created using a framework based on the needs of a

particular enterprise. One renowned framework is the TOGAF framework,

which stands for The Open Group Architecture Framework. The other is

the Zachman Framework for Enterprise Architecture (ZFEA). While both

frameworks are essential to understand, TOGAF will be used as a basis

for my proposed model in section 4.0.

3.1.1 TOGAF Framework

The TOGAF framework's main components consist of three primary

domains: the Business, Application, and Infrastructure architectures

(Figure 2) (Rohloff, 2005). The domain of business architecture focuses

on the fundamental organization and requirements of the business based

on its strategy and objectives. Application architecture gives an overview

13

of all applications supporting the day-to-day business operations with the

building blocks of enterprise applications, portal information management

platforms, data repositories, and Enterprise Architecture Integration (EAI)

Services. The last domain is infrastructure architecture, also called

technology infrastructure, which comprises the hardware, software, and

networking infrastructure required for all operations in the business.

(Rohloff, 2005).

These three domains are essential to any enterprise architecture. In my

work as a student system administrator at Adelphi University, I

appreciated the importance of these domains firsthand. For example, I

was given a set of business objectives that had to be met with a new

virtual machine being created for a new Help Desk ticket application. This

application would support web server infrastructure, allowing for rapid

deployment of ticketing websites for testing purposes. Maintaining the

university's infrastructure would only be possible with oversight and

models in these areas.

14

Figure 2

 A graphical representation of the three primary domains of an EA framework (Rohloff,

Michael., 2005).

Due to TOGAF’s focus on the application side of EA, the following

examples will examine the application side of an enterprise and how they

model it. One case study for the TOGAF methodology showcases a

fictional bank trying to expand its outreach to customers through different

offers and services. (The Open Group Adoption Strategies Working

Group, 2010). With these new offers and services, new architecture must

be carried out. Most of this case study goes over the business aspects of

the case study but also focuses on the Information Systems(IS)

architecture side. The IS architecture was developed based on the

15

business's initiatives (Figure 3) and activities. Once the business model

was developed, it was mapped to an IS model (Figure 4), showcasing

what needed to be done to support the business model. The IS model

showcases the application layer and what will be needed to reach this

scenario's business goals. It also showcases the business drivers,

strategies and initiatives, and activities underway within the business.

(Figure 5).

Figure 3

 The business model and activities (The Open Group Adoption Strategies Working

Group, 2010).

16

Figure 4

The information systems model to support the business (The Open Group Adoption

Strategies Working Group, 2010).

17

Figures 5,

 Business and IT model together (The Open Group Adoption Strategies Working Group,

2010).

Another example of the TOGAF methodology involves a fictional Small

Medium Enterprise called XYZ that focuses on dormitory house

18

accommodation services. (Hen et al., 2021). For this case study, XYZ

needs six applications to run its business successfully: a resident portal,

rental application (for residents and outsiders), payment application,

inventory application, asset management and digital recording application,

and tenant front office application. After the case study, the authors were

able to suggest an implementation of their model based on the company's

needs and budget and how to implement the information systems portion

of the model.

The TOGAF methodology is more graphic-oriented, with charts and

diagrams. In contrast, the ZFEA methodology is more text-based and

involves answering questions. For creating a tool to automate this

process, the TOGAF framework will be more applicable and a good

starting point for developing an automated tool to create EA models.

3.1.2 ZFEA Framework

Another EA methodology is the Zachman Framework for Enterprise

Architecture (ZFEA). This framework was designed after observing that

various engineered objects such as computers, buildings, and airplanes

can be classified according to the fundamental abstractions or

interrogatives, namely what, how, where, who, when, and why. There are

19

also six perspectives: the executive, business manager, architect,

engineer, technician, and user. These two groups create a six-by-six grid,

which forms the basis of an EA (Gerber et al., 2020).

An example of the ZFEA methodology showcases a scenario of an IBM

department in Finland to help apply the IBM Global Services Method to

small EA-oriented projects conducted in Finland, including both IT strategy

aspects and EA aspects. (Ylimäki, Halttunen, 2005) The ZFEA approach

uses the what, how, where, who, when, and why framework and with

which group is responsible. When applied to IT, the case study developed

the following diagram in Figure 6, which also encompasses other areas

relating to the IBM department.

20

Figure 6

This shows the ZFEA framework applied to a small set of EA-oriented

projects. (Ylimäki Tanja., Halttunen Veikko., 2005)

3.2 Threat Modeling

Threat modeling is a structured process for identifying and understanding

potential threats and developing and prioritizing mitigations to protect

valuable assets in the system (Shi et al., 2022). Threats are possible

21

harms that occur from a vulnerability or flaw in the design of software

applications (Shafiq et al., 2014). When a threat is discovered, it can be

exploited and used maliciously, leading to unwanted consequences. With

threat modeling, threats can be identified early on and help gauge how

much investment is needed to secure a system. When properly applied,

threat modeling can become effective on the enterprise level to alleviate

threats and maintain positive feedback among those who apply it (Shi et

al., 2022).

Threat modeling also analyzes software, organizational network systems,

and industrial areas such as the energy sector. Security experts and

engineers working side by side could create these threat models. This

may not always be seen as the best approach due to the lack of available

experts at times. Some believe it may be developing the system to create

their own threat model due to having a better understanding of how the

security model works and to take ownership of their own work (Shostack,

2008).

Threat modeling requires risk analysis, usually conducted during the

system's design phase. When applying threat modeling, a definition of risk

is required because each organization has different needs and risk

22

assessments. One organization might have a different approach

compared to another organization, but it will be based on their needs. It is

important first to apply the following four questions when applying a threat

model (Shostack, 2014).

1) What are you building?

2) What can go wrong?

3) What should be done about the things that can go wrong?

4) Was the threat model applied correctly by the modeler?

Understanding these questions will help threat modelers better understand

what they are creating and why they are doing it. It will also give them a

better path and an end goal for their threat model.

There are multiple different methods for tackling threat modeling. One

threat modeling method could follow the following process: What are we

building, what can go wrong, what are we going to do about it, and finally,

did we do a good enough job? (Yskout, et al. 2020). Yskout et al. then

analyzed twenty threat modeling projects. They noted that each project

followed the same structure(Figure 7) (Yskout et al., 2020):

1) Stakeholders will agree on the scope and goal of the project.

2) A model of the system, usually a flow chart or whiteboard diagram, is

created in a modeling session and finalized by a threat modeling expert.

23

3) An elicitation session is held to uncover threats, which are then ranked

by experts afterward.

4) Experts prepare a review meeting while colleagues perform quality

assurance checks. Finally, the results are presented to the stakeholders to

determine whether they are satisfactory.

Figure 7,

A model going over the four steps of threat modeling based on 20 threat

modeling projects. (Yskout et al., 2020)

STRIDE is another threat modeling method, the most widely used model.

The model can cover the six threats of threat modeling: Spoofing,

Tampering, Repudiation, Information Disclosure, Denial of Service, and

Elevation of Privilege (Hussain et al., 2014). Once the STRIDE model has

been constructed, security threats are mapped and analyzed, creating a

DREAD model used to rate each identified threat from the STRIDE model.

DREAD stands for Damage potential, Reproducibility, Exploitability,

Affected users, and Discoverability (Hussain et al., 2014). When STRIDE

and DREAD are completed, any possible mitigation measures are

24

recommended. The only downside of STRIDE is its reliance on fully

manual modeling without any automation.

3.2.1 Threat Modeling Examples

Real-life threat models include a case study with the New York City Cyber

Command (NYC3), which is responsible for defending NYC from cyber

attacks. NYC is a city that supports 60 million visitors each year and has

over 300,000 government employees (Stevens et al., 2018). To minimize

the time an employee spends on their duties, the NYC3 used the Center

of Gravity threat modeling method due to its top-down approach and

insight into what an adversary might be thinking. The case study results

showed that after 120 days of completing the study, the NYC3

implemented eight new categories of controls directly based on the

actionable defense plans developed by the participants in the study. Also,

improvement was seen in the following areas: Testing readiness, securing

accounts, protecting physical network assets, crowdsourcing

assessments, sensor coverage, protecting legacy systems, protecting

against data corruption, and reducing human error (Stevens et al., 2018).

These improvements are exactly what this paper is seeking to improve but

in an automated environment that will allow quick and easy adoption

through the creation of threat models for enterprise environments.

25

Microsoft is a high-profile example of an enterprise using threat modeling

in the day-to-day development of its software and products. Adam

Shostack created the Security Development Lifecycle (SDL), which

Microsoft employed using a set of processes applied to all Microsoft

services that pose a severe security or privacy risk (Shostack, 2008). The

SDL process involves four steps: diagraming, threat enumeration,

mitigation, and verification. Diagraming uses data flow diagrams, which

help show processes, where data is stored, how it is connected, and what

entities it encompasses (Table 1). Threat enumeration under Microsoft

uses the STRIDE methodology for each element presented in the

Diagraming step. Mitigation uses the model to propose a practical

resolution using a redesign, standard mitigations, unique mitigations, or

just accepting the risk. Finally, verification ensures that the entire threat

model process has been thoroughly conducted according to Microsoft

policy and that all risks have been mitigated (Shostack, 2008).

Name External
Entity

Process Data Flow Data Store

Representation Rectangular
Box

Circle Directed Arrow Parallel Lines

26

Definition Things
outside your

control

Code How
information

flows between
other elements

Data at Rest

Examples People, other
systems,
websites

exes,
assemblies,

COM
components

Function Calls Files, databases,
registry keys

Table 1
 Shows an example of Diagramming (Shostack, 2008).

A detailed understanding of threat modeling and how to apply it to the real

world is essential if working on a tool to help automate threat modeling,

especially on the enterprise level, which usually involves lots of valuable

moving parts. Before moving into the research methodology and the

scope of this paper, it is important to fully understand what enterprise

threat modeling is and how it is currently applied to the real world.

27

3.3 Enterprise Threat Modeling

Enterprise threat modeling aims to create a consistent model or blueprint

of an enterprise's structure and organization. The model or blueprint would

include the overall goals, processes, and information systems present in

the enterprise (Grov et al., 2019). This type of threat modeling is referred

to as Enterprise Architecture analysis. When these models are created,

they help increase the general understanding of enterprise systems and

facilitate various forms of security analysis using attack simulations and

threat analysis (Xiong et al., 2022).

When understanding Enterprise Threat Modeling, it is essential to

understand Enterprise Architecture (EA) and how it relates to Enterprise

Threat Modeling. EA helps to describe the fundamental artifacts of

business and IT and how they relate to one another (Xiong et al., 2019).

This relation is defined by the National Institute of Standards and

Technology and contains the following:

1. Business architecture drives information architecture.

2. Information architecture prescribes information systems

architecture.

3. Information systems architecture identifies the data architecture

28

4. Data architecture suggests specific data delivery systems.

5. Data delivery systems (software, hardware, and communications)

support the data architecture.

Due to the nature of enterprises' businesses, understanding this

relationship is important so that a proper threat model can be created

while having a complete understanding of how the EA operates.

Enterprise models should be applied to enterprises of any size. Even if an

enterprise has only a handful of employees, it should still be necessary to

model infrastructure for current and future use. Not doing so will cause

more issues as the enterprise grows and more is added to keep up with

demand. Even if an enterprise does not plan to scale up, having a model

to threat analyze will help the enterprise stay more secure and allow future

additions to integrate with legacy systems.

Enterprise threat models are unique compared to other threat models

since they account for size and scope. For example, Microsoft is

responsible for having a 70% market share of the OS ecosystem (Desktop

Operating System Market Share 2013-2023, 2023). Having a working

threat model is essential to organizations like Microsoft, with extensive

market share to prevent vulnerabilities and the damage that may result

29

from them. There are downsides to enterprise architecture development,

such as no appreciation from project sponsors, lack of time, and

insufficient tool support. Intuition is often the only decision driver, with no

reuse of already gained knowledge. This usually leads to acceptance

issues and quality problems with the software architectures under

construction (Zimmermann et al., 2007).

Meta models are at the core of Enterprise Architecture design; they

provide a clear view of the structure and dependencies between relevant

parts of the organization. As talked about previously, Microsoft employed

its security development lifecycle for all of its software products, especially

those that posed a significant security or privacy risk. Microsoft's approach

exemplifies how threat modeling is used in the enterprise environment.

However, it is also an example of how they rely on STRIDE as a primary

aspect of their threat modeling style, which is known to involve the manual

creation of threat models without the help of automation. The threat

modeling methods discussed in the previous section also apply to

enterprise threat modeling. However, the models will need to be scalable

and readable to be of any use for analysis.

30

4.0 Proposed Model

After a thorough literature review, a model was developed based on the

fundamental principles of enterprise architecture (see Section 3.1) and the

overarching purpose of threat modeling (see Section 3.2). Our design is

an evolution of the model proposed by Leune and Kim (2021). The

proposed model represents the enterprise architecture principles in a

threat model format, allowing for analysis of an entire enterprise and its

components, depending on which layer is being examined. The business,

application, and implementation/technology layers (Figure 8) are

represented in the model, each with its components and channels.

31

32

Figure 8,

The literature review derived model showcasing the main principles of enterprise

architecture.

4.1 The Meta Layer

4.1.1 Purpose of Layer

The meta layer provides foundational definitions based on the Service and

how that Service interacts with the rest of the model. This provides the

model with a connection to the business layer.

4.1.2 Layer Elements

Definition 1 (Service). A Service provides a measure of work (Leune and

Kim, 2020).

Definition 2 (Interaction). An Interaction is a way to engage and make use

of a Service.

The meta layer's modeling primitives are the Service and its Interaction

with the other layers; a service is only connected through interactions.

33

4.2 The Business Layer

4.2.1 Purpose of Layer

Like the concepts introduced in Section 3.1 (Enterprise Architecture), The

Business Layer focuses on the business's fundamental organization and

requirements. It is based on the organization’s strategy and objectives.

These fundamentals are applied to the Business Layer and give an

overview of what the service will offer the business and its activities.

4.2.3 Layer Elements

Definition 3 (Business Service). A Business Service is a type of Service

that focuses on an organization's needs and enables Activities.

Definition 4 (Activity). An Activity is only possible with a Business Service

and describes what the Business Service enables for the organization.

The business layer comprises two modeling primitives: the Business

Service and an Activity. The Business Service enables a specific activity

and derives directly from the service primitive in the meta layer. For

example, an email service will enable a business to use email.

34

4.3 The Application Layer

4.3.1 Purpose of Layer

The Application Layer identifies the functional components that provide a

Business Service. The Activity-concept introduced in the Business Layer

is refined into Events and Channels. It focuses on the data passing

through, how events and channels feed into the service, and how the

application layer bridges the business and implementation layers.

4.3.2 Layer Elements

Definition 5 (Application Service). An Application Service is a more

narrowed-down version of a Business Service and details that specify the

function being performed by the Application Service.

Definition 6 (Event). An Event is a result of an action taken by the

Application Service.

Definition 7 (Channel). A Channel represents a flow of data from one

location to the next.

The Application Layer consists of the following modeling primitives: The

Application Service, Event, Channel, and Data primitives. For example, if

the Business Service is an authentication service, then the Application

35

Service would be a type of authentication service, such as multi-factor

authentication (MFA). Event and Channel are derived from the primitive

activity in the business layer.

An Event results from a service's actions, such as push notifications and

authentication requests. Each action has a flow of data fed through a

Channel. These Channels simply act as a medium and pass data from

one location to another, usually for processing and authentication. The

data from the Channel is recorded and sent to the application.

4.4 The Implementation Layer

4.4.1 Purpose of Layer

The Implementation Layer shows how the previous layers are

implemented on a hardware and software level. Each layer now has a

purpose; the Business Layer represents the why, the Application Layer is

the what, and the implementation layer is the how. For each Application

Service, there must be a Service Implementation. Therefore, for each

Business Service, there must be a Service Implementation. Without the

Implementation Layer, the other layers could not function.

36

4.4.2 Layer Elements

Definition 8 (Service Implementation). A Service Implementation is how

the Application Service is implemented.

Definition 9 (Channel Implementation). The Channel Implementation is

how Channels are implemented into the Service.

Definition 10 (Event Implementation). The Event Implementation is how

Events are implemented into the Service.

Definition 11 (Platform). A Platform is the name of the service, along with

its data and hardware.

Definition 12 (Architecture). Architecture is the connection type being

implemented into the service.

Definition 13 (Components). Components are the combination of data

and hardware and how they relate to the Service Implementation.

The Implementation Layer consists of the following modeling primitives:

Service Implementation, Channel Implementation, Event Implementation,

Platform, Architecture, and Components. The Service Implementation

derives from the Application Implementation and consists of two separate

primitives: the Platform and Architecture. The Platform has a set of

Components that determine the type of data being used, the type of

37

hardware, and the name of the Service. These Services could be physical,

virtual, containerized, or in the cloud as a software, platform, or

infrastructure as a Service model. The Architecture primitive determines

the service's connection: mobile, API, web, client/server, and/or stand-

alone. The Event and Channel implementations are derived from the

Event and Channel primitives in the Application Layer. The Event and

Channel Implementations are implemented depending on the service

implementation requirements.

38

5.0 Validation

5.1 Case Study

A case study of Adelphi University's Information Technology infrastructure

was conducted to determine the proposed model's validity. The university

is a valid choice for a case study due to its enterprise structure and

reliance on technology, utilizing both on-premise and cloud-based

applications to support the University's academic and administrative

processes. The services focused on during the case study are Active

Directory, eCampus, Slate, Navigate, and Duo for MFA. Due to their

importance for the university, these services are used daily and would be

good to implement in the proposed model.

eCampus1 is an on-premise online web-based portal enabling students,

faculty, and administrators to access other applications. Slate2 is a cloud-

based website tracking prospective students. It is used from the moment

of inquiry until they are accepted to Adelphi University and have

committed to attending by making a tuition deposit. This system enables

Admissions to maintain one-to-one contact with students through text or

1 https://portal.adelphi.edu
2 https://slate.org/

https://portal.adelphi.edu/
https://slate.org/

39

email. It also facilitates tracking whether students attended events and if

housing deposits were made. Navigate3 is an online cloud-based hub for

faculty to view student records, record notes about advising meetings, and

issue reports or alerts if needed. It is accessed using a web browser,

requiring HTTP over TLS. Navigate also provides a mobile app, which is

not used at Adelphi.

Furthermore, while the Navigate platform supports direct use by students,

Adelphi has only made the service available to faculty and administrators.

Active Directory is an on-premise directory service used to create,

manage, and delete users, organizational units, and control groups. Active

Directory can only be accessed through Adelphi’s internal network and

with Active Directory directly installed on an individual's computer. Finally,

Duo4 is used by the University as a form of MFA for faculty and staff.

5.1.1 Authentication

Authentication is required for each application service used by students,

administrators, faculty, and staff. Students and faculty/staff primarily use

3 https://eab.com/solutions/navigate360/
4 https://duo.com/

https://eab.com/solutions/navigate360/
https://duo.com/

40

eCampus. Students must only log onto these services with a username

and password. They will only use Duo if they become student employees.

If students also accept on-campus appointments and need access to

protected services, they will be provided with a separate work account.

This secondary account may have MFA services associated with it.

In a typical authentication exchange, Faculty and Staff will use both a

username/password and Duo to access services provided by Adelphi. Duo

generally does not prompt for a second credential when authenticating on

the campus network, as access from known IP space is considered a form

of 2-factor authentication. However, this varies depending on the security

policies applied to each service. After logging in with the correct

credentials, Duo will send a push notification to the user's registered

cellphone or smartwatch. Alternatively, users can receive an SMS text

message or a phone call to their previously known telephone number. If

the user passes an authentication challenge, they will authenticate to the

service they are accessing, and determining who gets access to what

services depends on the employee's role. For example, only the System

Administrator teams can access Active Directory. Admissions and at least

one individual from each Adelphi academic department have access to

Slate.

41

5.1.2 Logging and Audit

As an educational institution, Adelphi values privacy and confidentiality as

a significant priority to ensure secure and protected data. Even during a

compromise, limiting what data is available per service is essential to

reducing the amount of sensitive information in case of a breach. Slate

only keeps student social security numbers accessible to a select few

individuals, and any student data is only accessible to those with access

to Slate. Auto logs are also available to check when a change to a record

is made so that any abnormalities are recorded. Applications will also limit

what information is stored. For example, eCampus will usually only store

information regarding a user’s username and email.

Logs are another way to validate that data is authentic. Whenever a user

releases information to an application on the portal or successfully/fails to

log in, a log will be created for audit purposes. These logs are stored on a

local disk; then, the single sign-on logs are streamed to Splunk, where

they are processed. Only the application administrators and information

security teams have access to these logs. Active Directory contains the

most access on this list; if a malicious actor gains complete control over

42

Active Directory, they can reset passwords and gain access to any

account they wish. Also, they would have access to faculty/staff locations,

university ID numbers, emails, and permissions. Fortunately, the list of

users with this privilege is only a select few, and logs are created for each

transaction. These logs are stored on the domain controllers, readable in

event viewers, and exported to Splunk for analysis. All events,

authentication, synchronization, and system events are logged and remain

on the domain controller until space is needed.

5.1.3 Backups

For redundancy, backups are performed weekly to a tape drive with a year

or more shelf life. Duo automatically records a log whenever an

authentication, telephony, or administrator action occurs. For privacy, Duo

does not have access to any device and will only contain information

regarding the device's current version number, security settings, and the

names of the services used for Duo authentication.

43

5.1.4 Integration

Duo is integrated into each of the services in the case study because it is

the primary MFA provider. Slate feeds information into SAAS and will

export data as needed per department. eCampus integrates with about

150 separate applications using SimpleSAMLphp, directly integrated into

Active Directory, Duo, and Azure. Active Directory directly syncs up with

Google Workspace for automatic Google Account creation, deletion, and

updates.

These services represent a good test for the model; the infrastructure is

extensive and relied upon for the college's successful operation. Using

these services as a case study will allow the model to be incorporated into

the university to determine what systems could be vulnerable and what

can be mitigated.

5.2 Case Study Results

I validated the proposed modeling approach by using it to formally

represent my case study findings. The results from the case study showed

examples of the three key enterprise architecture domains: the business,

application, and infrastructure domains. The information gathered during

44

the study is also transferable to a model format. Given these two

connections, I validated our proposed modeling approach by using it to

represent our case study findings formally. To illustrate this approach, I

examined Adelphi University's authentication systems and used our

proposed method to represent these findings.

5.3 Business Layer in Case Study

The business architecture domain focuses on the business's fundamental

organization and requirements based on its strategy and objectives. This

is associated with the Business Layer, as Adelphi's authentication services

contribute to the university’s efforts to maintain security amongst faculty

and staff accounts. Users require protection so that their individual data is

private and only accessible to them. However, no system is foolproof, with

weak passwords and limited MFA options allowing for unwanted

intrusions.

Keeping accounts safe and secure will enable Adelphi to stay safe and

prevent intrusions that may compromise Adelphi’s business as an

educational institution. Using an authentication service also enables

45

faculty and staff to access secure information they would be unable to

access otherwise.

When the proposed business layer modeling primitives are applied to the

case study, the following model is created in Figure 9:

Figure 9

 Shows the business layer case study applied to the proposed model.

Figure 9 shows that the Authentication Service(Business Service)

described above enables Authentication (the Activity). Meanwhile,

Authentication requires the Authentication Service to operate.

5.4 Application Layer in Case Study

The Application Layer focuses on the authentication service and consists

of three components: the application services, the events, and the

46

channels. Application Services are the Services being provided. For the

Case Study, we focus on the MFA service. A user attempting to log in

would trigger an authentication Event, and the Channel is the data

exchanged between the service and the service provider. Each

component seen in Figure 10 will be examined further in the following

three subsections.

Figure 10

This figure shows the application layer.

5.4.1 Application Services

Adelphi employs an MFA service as an extra layer of security when faculty

and staff access sensitive applications. This additional authentication also

protects against malicious users with the username and password but not

access to the legitimate user's MFA device. The first authentication layer

is username/password authentication. When a user is authenticated, the

MFA prompts the user for a token, usually paired with the user's device.

47

5.4.2 Events

An Event is triggered when a user attempts to log into an Adelphi that

requires MFA. Given that MFA is used by faculty and staff, they would

have to authenticate through the application, and it depends on where the

user is located and which application they are trying to access. The Event

could result in an MFA push, where the user presses a button on a

secondary device to confirm they sent a request, response to an

SMS/voice call request, where a code is sent to the user's phone number

for confirmation or an authenticator code that the user must enter which

refreshes every number of seconds on the authenticator app. If an

authentication fails, the application issues another Event back to the MFA

service, denying the user access. For example, if a user is trying to access

an application with MFA, they will receive a notification asking to confirm

their identity through a push notification; after confirming or denying, the

Event is sent back to the MFA Service with the user’s response which will

determine whether or not the user is granted access.

5.4.3 Channels

Channels allow the exchange of events between application services. For

example, when a Duo authentication event is requested. The request is

packaged and sent to the Duo cloud server, where the information is

48

analyzed and then returned to the originating device with a pass-or-fail

confirmation.

5.4.4 Application Layer Model

When the proposed application layer modeling primitives are applied to

the case study, the following model is created.

Figure 11

This shows the application layer case study applied to the proposed model.

Figure 11 shows that the MFA Authentication(Application Service) sends

an Authentication Event(Event), which is then received by a channel and

recorded to the MFA authentication.

5.5 Implementation Layer in Case Study

Adelphi employs an MFA called Duo to enable push and code

authentication. As discussed earlier in Section 5.1, Duo is used by faculty

and staff to access specific data-protected applications that require

49

additional security. First, the faculty/staff member enters a username and

password, and if successful, an additional authentication step is performed

using Duo. If the user is on campus, additional IP address checks may be

used if the application supports it, as this would count as another form of

MFA.

Duo is provided as Software-as-a-Service and owned by the digital

communications company Cisco. It acts as a Platform for MFA. Clients

access the service Platform through the Duo Mobile app on a cellular

device via SMS, text, or voice telephone. The Architecture for Duo is web-

based. Event Implementations are implemented into the authentication

app, with the Channel Implementation implementing a connection

between the user's authentication method and the Duo cloud service for

process and review. When the proposed Implementation Layer modeling

primitives are applied to the case study, the following model in Figure 12 is

illustrated.

50

Figure 12

This shows the Implementation Layer case study applied to the proposed model.

Figure 12 shows that the Implementation Layer comprises the MFA

Implementation(Service Implementation). The MFA Implementation

contains the Channel Implementation, which subsequently contains the

Event Implementation. The MFA Implementation also includes

51

Duo(Platform) and the Architecture, which is Web-based. Duo comprises

components that consist of Data and the cloud as a platform and a

service.

5.6 Multi-Factor Authentication Model

Based on the three domains, the MFA service fits into the proposed model

to illustrate the interconnectivity between each domain and how the model

can demonstrate an Enterprise Threat Modeling Approach to a real-world

Enterprise. Now that all three layers have been incorporated into the

proposed model, each can be linked to form the following model in Figure

13, with the Meta Layer being added to indicate the service and its

interaction with the Business Layer.

52

Figure 13

The case study applied to the proposed model.

53

6.0 Conclusion And Future Work

In this thesis, I set out to answer the following questions: Are CTA models

effective for SOEM? How beneficial would automation and maintenance of

CTA models be for SOEM? Does automatically creating and maintaining

CTA models for SOEM help improve cybersecurity situational awareness?

How readable are large-scale automated models? Ultimately, I was able to

answer only one of our research objectives

CTA models are effective for SOEM, as indicated by the proposed model

and the case study. The proposed model is based on the Enterprise

Architecture TOGAF framework and incorporates threat modeling, when

combined, creates an enterprise threat model. A case study of Adelphi

University's Information Technology infrastructure was conducted to

determine the proposed model's validity. The model held true when

Adelphi’s MFA service was applied to the proposed model. The enterprise

business, application, and infrastructure domains were reflected in the

model as the business, application, and implementation layers.

The other three questions dealt with the automation of the proposed

model, but due to time constraints, the automation tool still needs to be

54

fully implemented. Therefore, the questions cannot be answered as of

right now. However, preliminary code results (see Appendix A) show that

automation could be possible by using inherited classes to illustrate the

proposed model and the case study. Future work will explore these results

as the code is refined into possible automated code.

55

Bibliography

Brocke J, Hevner A, Maedche A,. (2020). Introduction to Design Science

Research. 10.1007/978-3-030-46781-4_1.

Cyberthreat Analysis Tool - Identify Security Threats. (n.d.). SolarWinds.

Retrieved January 20, 2024, from

https://www.solarwinds.com/security-event-manager/use-cases/cyber-

threat-analysis

Dumitriu D and Popescu M, (2020). Enterprise Architecture Framework

Design in IT Management, Procedia Manufacturing, Volume 46, 2020,

Pages 932-940, ISSN 2351-9789,

https://doi.org/10.1016/j.promfg.2020.05.011.

Desktop operating system market share 2013-2023. (2023, September 4).

Statista. Retrieved October 29, 2023, from

https://www.statista.com/statistics/218089/global-market-share-of-

windows-7/

Duarte, F. (2023, April 3). Amount of Data Created Daily (2023). Exploding

Topics. Retrieved October 10, 2023, from

https://explodingtopics.com/blog/data-generated-per-day

Behrouz F and Fathollah M, (2016). A Systematic Approach to Enterprise

Architecture Using Axiomatic Design, Procedia CIRP, Volume 53,

2016, Pages 158–165, ISSN 2212-8271,

https://www.solarwinds.com/security-event-manager/use-cases/cyber-threat-analysis
https://www.solarwinds.com/security-event-manager/use-cases/cyber-threat-analysis
https://doi.org/10.1016/j.promfg.2020.05.011
https://www.statista.com/statistics/218089/global-market-share-of-windows-7/
https://www.statista.com/statistics/218089/global-market-share-of-windows-7/
https://explodingtopics.com/blog/data-generated-per-day

56

https://doi.org/10.1016/j.procir.2016.07.012.

(https://www.sciencedirect.com/science/article/pii/S221282711630747

8)

Federal Enterprise Architecture Framework. (2023, September 6). CMS.

Retrieved November 16, 2023, from https://www.cms.gov/data-

research/cms-information-technology/enterprise-architecture/federal-

enterprise-architecture-framework

Gerber, A., le Roux, P., Kearney, C., & van der Merwe, A. (2020). The

Zachman Framework for Enterprise Architecture: An Explanatory IS

Theory. Responsible Design, Implementation, and Use of Information

and Communication Technology: 19th IFIP WG 6.11 Conference on e-

Business, e-Services, and e-Society, I3E 2020, Skukuza, South Africa,

April 6–8, 2020, Proceedings, Part I, 12066, 383–396.

https://doi.org/10.1007/978-3-030-44999-5_32

Grov, G., Mancini, F., Mestl, E.M.S. (2019). Challenges for Risk and

Security Modelling in Enterprise Architecture. In: Gordijn, J., Guédria,

W., Proper, H. (eds) The Practice of Enterprise Modeling. PoEM 2019.

Lecture Notes in Business Information Processing, vol 369. Springer,

Cham. https://doi.org/10.1007/978-3-030-35151-9_14

Hen, H., Andry., (2021). Enterprise Architecture Design Using TOGAF

ADM Framework (SME Case Study: Dormitory House). 9. 95–99.

https://doi.org/10.1016/j.procir.2016.07.012
https://www.sciencedirect.com/science/article/pii/S2212827116307478
https://www.sciencedirect.com/science/article/pii/S2212827116307478
https://www.cms.gov/data-research/cms-information-technology/enterprise-architecture/federal-enterprise-architecture-framework
https://www.cms.gov/data-research/cms-information-technology/enterprise-architecture/federal-enterprise-architecture-framework
https://www.cms.gov/data-research/cms-information-technology/enterprise-architecture/federal-enterprise-architecture-framework
https://doi.org/10.1007/978-3-030-44999-5_32
https://doi.org/10.1007/978-3-030-35151-9_14

57

Hussain S, Kamal A, Ahmad S, Rasool G, Iqbal S,. (2014). THREAT

MODELLING METHODOLOGIES: A SURVEY. 26. 1607-1609.

IDG (2020). 2020 IDG Cloud Computing Survey. Technical report, idg.

Leune, K and Kim, S. (2020). Supporting Cyber Threat Analysis with

Service-Oriented Enterprise Modeling. In Proceedings of the 18th

International Conference on Security and Cryptography (SECRYPT

2021), pages 385-394.

KTH. (2018, January 17). KTH. Retrieved October 10, 2023, from

https://www.kth.se/cs/nse/research/software-systems-architecture-and-

security/projects/old-projects/cysemol/description-1.432380

Yskout K., Heyman T., Van Landuyt D., Sion L., Wuyts K., and Joosen

W., "Threat modeling: from infancy to maturity," 2020 IEEE/ACM 42nd

International Conference on Software Engineering: New Ideas and

Emerging Results (ICSE-NIER), Seoul, Korea (South), 2020, pp. 9–12.

Maslin, S. (2022, November 28). How a Cyberattack Plunged a Long

Island County Into the 1990s. The New York Times. Retrieved

September 24, 2023, from

https://www.nytimes.com/2022/11/28/nyregion/suffolk-county-cyber-

attack.html

Morgan, S. (2022, December 8). Cybercrime To Cost The World $10.5

Trillion Annually By 2025. Cybercrime Magazine. Retrieved October

https://www.kth.se/cs/nse/research/software-systems-architecture-and-security/projects/old-projects/cysemol/description-1.432380
https://www.kth.se/cs/nse/research/software-systems-architecture-and-security/projects/old-projects/cysemol/description-1.432380
https://www.nytimes.com/2022/11/28/nyregion/suffolk-county-cyber-attack.html
https://www.nytimes.com/2022/11/28/nyregion/suffolk-county-cyber-attack.html

58

14, 2023, from https://cybersecurityventures.com/cybercrime-

damages-6-trillion-by-2021/

The Open Group Adoption Strategies Working Group. (2010, April). Case

Study/White Paper Template. The Open Group Publications Catalog.

Retrieved November 21, 2023, from

https://pubs.opengroup.org/onlinepubs/7698999699/toc.pdf

Rohloff, M. (2005). Enterprise Architecture - Framework and Methodology

for the Design of Architectures in the Large.. 1659–1672.

Shostack, A. (2008). Experiences Threat Modeling at Microsoft.

Shostack, A. (2014). Threat Modeling: Designing for Security. Wiley.

Stevens, R., Votipka, D., Redmiles, E.M., Ahern, C., Sweeney, P., &

Mazurek, M.L. (2018). The Battle for New York: A Case Study of

Applied Digital Threat Modeling at the Enterprise Level. USENIX

Security Symposium.

Venable, J., Pries-Heje, J., Baskerville, R. (2014, November 11).

European Journal of Information Systems. FEDS: a Framework for

Evaluation in Design Science Research, 25, 77–89.

https://link.springer.com/article/10.1057/ejis.2014.36#citeas

White, S. K. (2022, November 23). What is enterprise architecture? A

framework for transformation. CIO. Retrieved November 14, 2023,

https://cybersecurityventures.com/cybercrime-damages-6-trillion-by-2021/
https://cybersecurityventures.com/cybercrime-damages-6-trillion-by-2021/
https://pubs.opengroup.org/onlinepubs/7698999699/toc.pdf
https://link.springer.com/article/10.1057/ejis.2014.36#citeas

59

from https://www.cio.com/article/222421/what-is-enterprise-

architecture-a-framework-for-transformation.html

W. Xiong, P. Carlsson, R. Lagerström, "Re-using Enterprise Architecture

Repositories for Agile Threat Modeling," 2019 IEEE 23rd International

Enterprise Distributed Object Computing Workshop (EDOCW), Paris,

France, 2019, pp. 118–127, doi: 10.1109/EDOCW.2019.00031.

Xiong, W., Legrand, E., Åberg, O. et al. Cyber security threat modeling

based on the MITRE Enterprise ATT&CK Matrix. Softw Syst Model 21,

157–177 (2022). https://doi.org/10.1007/s10270-021-00898-7

Ylimäki, T and Halttunen, V. (2005). Method engineering in practice: A

case of applying the Zachman framework in the context of small

enterprise architecture-oriented projects. Information Knowledge

Systems Management. 5. 189-209.

Zimmermann, O, Gschwind, T, Küster J, Leymann, F, Schuster N,.

(2007). N.: Reusable Architectural Decision Models for Enterprise

Application Development. In: Overhage, Sven (ed.); Szyperski et al.

(ed.); Reussner, Ralf (ed.); Stafford et al. (ed.): Third International

Conference on the Quality of Software-Architectures (QoSA, 2007), pp.

15-32. 10.1007/978-3-540-77619-2_2.

https://www.cio.com/article/222421/what-is-enterprise-architecture-a-framework-for-transformation.html
https://www.cio.com/article/222421/what-is-enterprise-architecture-a-framework-for-transformation.html
https://doi.org/10.1007/s10270-021-00898-7

60

Z. Shi, K. Graffi, D. Starobinski, N. Matyunin, "Threat Modeling Tools: A

Taxonomy," in IEEE Security & Privacy, vol. 20, no. 4, pp. 29–39, July-

Aug. 2022, doi 10.1109/MSEC.2021.3125229.

61

Appendix

Appendix A

#Chris Benson

#case-study.py

from application import *

def setup_structures():

 #Splunk Log Service

 SEMS = ApplicationService() #Splunk Event Management Service

 #Login service

 loginSvc = ApplicationService()

 #Duo Example...

 duoMFARespCh = Channel(service=loginSvc)

 duoMFARespEvt = Event(channel=duoMFARespCh)

 duoSvc = ApplicationService(events=[duoMFARespEvt])

 #ECampus Example

 eCampusRespCh = Channel(service=loginSvc)

 eCampusRespEvt = Event(channel=eCampusRespCh)

 eCampusSVC = ApplicationService(events=[eCampusRespEvt])

 #Log Example

 directoryService = ApplicationService()

 domainEvent = Event() #Indexing channel?\

 #

setup_structures()

#meta.py

class Service:

 __interactions = [] # A list of other service with which we

Interact

62

 pass

#business.py

from meta import Service

from typing import List, ForwardRef #ForwardRef allows reference to

class not yet defined

class BusinessService(Service): #BusinessService inherits Service

 def __init__(self, requires: List[ForwardRef('Activity')]): # a

list of Activities required to provide this Service

 self.requires = requires

 pass

class Activity:

 def __init__(self, enables: List[BusinessService]): # a list of

BusinessServices enabled by this Activity

 self.enables = enables

 pass

#application.py

from business import BusinessService

class MissingServiceException(Exception):

 pass

class Event:

 def __init__(self, channel=[]):

 self.channel = channel #The Channel via which this event can be

sent

class ApplicationService(BusinessService):

 def __init__(self, events: list[Event] = []):

 self.events = events # list of Events that can be sent by this

service

 pass

63

class Channel:

 def __init__(self, service: ApplicationService = None):

 if service is None:

 raise MissingServiceException()

 self.__service = service # The service to which this channel

provides its events

#implementation.py

from application import ApplicationService

from application import Channel

from application import Event

from typing import List, ForwardRef #ForwardRef allows reference to

class not yet defined

class Platform:

 def __init__(self, components: List[ForwardRef('Component')] =

None):

 self.components = components # Components

class Architecture:

 def __init__(self, serviceType):

 self.serviceType = serviceType #Just the type of service this

provides

class ServiceImplementation(ApplicationService):

 def __init__(self, platform: Platform, architecture: Architecture,

events: List[ForwardRef('EventImplementation')]):

 self.platform = platform

 self.architecture = architecture

 self.events = events # a list of EventImplementations

class ChannelImplementation(Channel):

 def __init__(self, service: ServiceImplementation):

 self.service: ServiceImplementation

class EventImplementation(Event):

 def __init__(self, channel: ChannelImplementation):

64

 self.channel = channel

class Component:

 def __init__(self, data, contains=None,):

 if contains is None:

 self.contains = []

 self.contains = contains# Components, string perhaps?

 self.data = data #TBD, what is data?

class CloudComponent(Component):

 pass

class SAASImplementation(CloudComponent):

 pass

class PAASImplementation(CloudComponent):

 pass

class IAASImplementation(CloudComponent):

 pass

