Problems for Gaussian Elimination

1. State whether the following augmented matrices are in RREF and compute their solution sets.

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 3 & 1 \\ 0 & 1 & 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 & 2 & 0 \end{pmatrix},$$

$$\begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 2 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \,,$$

$$\begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 & 0 & 2 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 3 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 2 & 0 & -2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \end{pmatrix}.$$

2. Show that this pair of augmented matrices are row equivalent, assuming $ad-bc \neq 0$:

$$\begin{pmatrix} a & b & | & e \\ c & d & | & f \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & | & \frac{de-bf}{ad-bc} \\ 0 & 1 & | & \frac{af-ce}{ad-bc} \end{pmatrix}$$

3. Consider the augmented matrix:
$$\begin{pmatrix} 2 & -1 & | & 3 \\ -6 & 3 & | & 1 \end{pmatrix}$$

Give a *geometric* reason why the associated system of equations has no solution. (Hint, plot the three vectors given by the columns of this augmented matrix in the plane.) Given a general augmented matrix

$$\begin{pmatrix} a & b & | & e \\ c & d & | & f \end{pmatrix} ,$$

can you find a condition on the numbers a, b, c and d that create the geometric condition you found?

4.	List as many operations on au Give examples of operations th	igmented matrices that pr nat break row equivalence	reserve row equivalenc	e as you can.	Explain your answers.

- 5. Row equivalence of matrices is an example of an equivalence relation. Recall that a relation \sim on a set of objects U is an equivalence relation if the following three properties are satisfied:
 - Reflexive: For any $x \in U$, we have $x \sim x$.
 - Symmetric: For any $x, y \in U$, if $x \sim y$ then $y \sim x$.
 - Transitive: For any x, y and $z \in U$, if $x \sim y$ and $y \sim z$ then $x \sim z$.

(For a fuller discussion of equivalence relations, see Homework 0, Problem 4)

Show that row equivalence of augmented matrices is an equivalence relation.