Name: \qquad

> Answer the questions on the exam and not on a separate sheet of paper. No work is necessary for the True/False or the Multiple Choice questions. For all other questions, please circle your answers and show your work for full credit. There are 15 questions for a total of 100 points.

True or False: Please circle either true or false. No work is necessary.

1. (5 points) If $\left\{a_{n}\right\}$ is a decreasing sequence and $a_{n}>0$ for all n, then $\left\{a_{n}\right\}$ is convergent.
A. True
B. False
2. (5 points) If $f(x)=2(x-1)-(x-1)^{2}+\frac{1}{3}(x-1)^{3}-\cdots$ is convergent for all values of x, then $f^{\prime \prime \prime}(1)=3$.
A. True
B. False
3. (5 points) $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!}=\frac{1}{e}$.
A. True B. False
4. (5 points) If the series $\sum c_{n} x^{n}$ diverges when $x=6$, then the series diverges when $x=-10$.
A. True
B. False

Multiple Choice: Please circle your answer. No work is necessary, but partial credit will be given if work is shown.
5. (5 points) If the limit of the sequence a_{n} defined by $a_{n+1}=-\frac{4}{4+a_{n}}$ exists, then the limit is
A. 1
B. -1
C. 2
D. -2
E. π
6. (5 points) Which of the following series are divergent? (There might be more than one.)
A. $\sum_{n=1}^{\infty} \frac{n^{2}+4 n-1}{\sqrt{n^{5}+\pi n+9}}$
B. $\sum_{n=1}^{\infty} \frac{n+1}{n^{4}}$
C. $\sum_{n=1}^{\infty} \frac{1}{\pi^{n}}$
D. $\sum_{n=1}^{\infty} \frac{e^{n}+1}{e^{2 n}}$
E. $\sum_{n=1}^{\infty} \frac{1}{n(n-1)}$
7. (5 points) The radius of convergence of the series $\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2} 5^{n}}$ is
A. 0
B. 5
C. ∞
D. $\frac{1}{5}$
8. (5 points) The Taylor series of $\sin \left(x^{2}\right)$ centered at $a=0$ is
A. $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n+1}}{(2 n+1)!}$
B. $\sum_{n=0}^{\infty} \frac{x^{2 n}}{n!}$
C. $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n}}{(2 n)!}$
D. $\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n+2}}{(2 n+1)!}$
9. (5 points) Let $T_{3}(x)$ be the degree 3 taylor polynomial of $\sin (x)$ at $a=0$. Using Taylor's inequality, the bound for

$$
\left|R_{3}(x)\right|=\left|\sin (x)-T_{3}(x)\right|
$$

for $x \in[0,0.1]$ is
A. $\frac{1}{3!}(0.1)^{3}$
B. $\frac{x^{4}}{3!}$
C. $\frac{1}{4!}(x)^{4}$
D. $\frac{1}{4!}(0.1)^{4}$
\qquad 10. (5 points) $\sum_{n=1}^{\infty} 2^{2 n} 5^{1-n}$ is
A. convergent and equal to 5
B. convergent and equal to $5 / 4$
C. convergent and equal to 20
D. divergent and equal to ∞
E. none of the above
11. (5 points) Which of the following statements are correct?
I. Every convergent series is absolutely convergent.
II. If a series is absolutely convergent, then it is convergent.
III. The series $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n^{2}}$ is absolutely convergent.
A. I,II and III
B. I and III
C. II and III
D. only III
E. I and II

Short Answer: Show your work for full credit.

12. (5 points) Use series to evaluate the limit $\lim _{x \rightarrow 0} \frac{\sin (x)-x}{x^{3}}$.
13. (a) (5 points) Explain why the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{5}}$ is convergent.
(b) (5 points) Find the sum of the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{5}}$ to two decimal places.
14. (15 points) Find the interval of convergence of the series $\sum_{n=1}^{\infty} \frac{(x+2)^{n}}{n 4^{n}}$.
15. (a) (10 points) Find the power series representation of $\frac{1}{(1-x)^{2}}\left(\operatorname{HINT}: \frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{1}{1-x}\right)=\frac{-1}{(1-x)^{2}}\right)$.
(b) (5 points) What is the radius of convergence of the series in part (a)?
