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Consider an algebraic equation that has to be solved:
AX"+Bx" 4 Cx" T+ L+ K =0,

Suppose that an integer approximation p to the root is known, such that the rg
lies in the interval [p, p + 1[. If we change the unknown using the substitu iq
x=p+1/y (0 < 1/y < 1), we obtain a new equation in y:

b.v\3+m.u\§|_+ﬁ.w\3|u+... +~ﬂ."o.

for which we are assured that it has at least one root greater than 1. If we let q be tif
integer part of this root, the substitution y = g + 1/z leads to a new equation ing

which has at least one root greater than 1. Let r be its integer part ... and so on.
continued fraction

P

9+ —

r+—

will provide the value of a root of the initial equation, and its successive converger
provide alternately upper and lower approximations for the root. Of course, if thil
root is rational, the process will end, and provide the root, after a finite number of it
erations. For irrational roots, the process also gives us an estimation of the error ofg
approximation al each stage, something that the Newton-Raphson method cannti
do. The text by Lagrange that follows needs no further comimentary.

L -L. Lagrange

Sur la résolution des équations numériques,

Mémoires de I'Académie royale des Sciences et Belles-Lettres de Berlin,
vol. XXIII {1769)

Euvres, vol. 11, Paris; Gauthier-Villars, 1868, pp. 539-578.

SIII - A new method for approximating the roots of
numerical equations

18, Consider the equation

(a) Ax"+Bx" 1+ Cx™ e L 4K =0

and suppose that we have already found, by the preceding method or otherwise, the integer

value approximating to one of its roots, being real and positive: let this first value be p,such
that we have

x>p and x<p+1;

we make

xuv+|HJ

¥
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ituti i i ion, in the place of x, we shall have, after
bstituting this value in the proposed equation, in ¢
%_m.:ﬂﬁnm ﬁrnmivo_a equation by y™ and arranging the terms in order of powers of y, an
bl

pation of the form .
MMV Ay +B Yy CY T 4 L+ K=0.
1

Now, since by hypothesis, — >0 and < 1, we have y > 0; therefore the equation {b) must nec-
OW; 1
Y
{lv have one real root greater than unity. . o .
ﬁmmﬂmﬂrmnma_ﬁ by the methods of §1, look for the integer <m_E.w .uvwaoﬁq.w:am this root,
d, since this root has to be positive, we only need to consider positive [values of] ¥ ﬁ.b.mw
® _,,mmiam found the integer value that approximates to y, which [ shall call g, we now make

1
y=4q+ 2’

and, substituting this value of y in equation (b), we shall have a third equation of the form
(© A"Zm 4+ B ez 4+ L+ K =0,

which must necessarily have at least one real root greater than unity, for which we can find an
approximate integer value in the same way.
This approximation to z being called r, we now have

1
Z=r+ =,
u
and on substituting we shal! have an equation in u which will have at least one real root
eater than unity, and so on. ]
¢ Continuing in mrn same manner, we shall approach closer and closer to the value of the Haﬂ
quired root; but, should it happen that some one of the numbers p, 4, s mrcu.__a be an s”y
root, then x = p or ¥ = ¢, ..., and the operation will terminate; therefore in this case, we s
] 3 1w
find for x a commensurable value. . .
In all other cases the value of the root must necessarily be incommensurable, and can only

be approximated, as close as is wished.
[..]
§IV. - The application of the preceding methods to some examples.
25. 1 shall take as my first example the equation that Newton solved by his method, namely
x'-2%-5=0
[...]

1 . .
I shall now, following the methoed of $IIL, putx =2 + M“ on substituting and arranging the

terms as powers of ¥, we have the equation

¥ -0y ~6y-1=0,
in which T have changed the signs in order to make the first term positive.

This equation iz_mﬁrnnomoqm necessarily have a single n.oo. greater than unity (19), so Eww
in order to find an approximate value we need only substitute the _.._S...__.cmi 0,1,2,3,..,un
we find two consecutive substitutions that give results of contrary sign. .

In order not to carry out many unnecessary substitutions, | u.oa that on putting ¥ u.wr_ MMH
3 negative result, and in putting y = 10 the result is still negative; 1 start therefore wi o.
number 10, and I make successively y = 10,11, ....1 find straight away the results ~ 61,54, ...
from which I conclude that the approximate value for y is 10; therefore g = 10.
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I therefore make y = 10 + 1 ,and I have the equation
z

6127~ 9427 - 202 -1=0,

and successively letting z = 1, 2, ..., | have the results - 54,71, ...; therefore r = 1.
1

Again,Ilet z=1+4 —,and ] shall now have the equation
u

541’ + 251 - 89u - 61 =0,
and, letting u = 1,2, ..., 1 shall have the results - 71,293, ..,; therefore s = I and so on.
By continuing in this way, we find the numbers
2,10, 1,1, 2, 1,3, 1, 1,12, ...,

50 that the required root can be expressed by this continued fraction

i

14—
.

1+

from which we can obtain the fractions (23)
2021 23 4 11 155 576 731 1307 16415

>

17 107 117 217 537 747 2757 3497 6247 7837 °

which are alternately smaller and greater than the value of x.

The last fraction HMMMW is greater than the required root; but the error will be less
FN , (23, 2°), that is less than 0.000 000 016 3; therefore, if the fraction 16415 is reduces

(7837) 7837
to decimals, it will be exact up to the seventh decimal; now, in carrying out the division, w
obtain 2.094 551 486 5...; therefore, the required root will be between the numbel
2.094 551 49 and 2,094 551 47.

Newton, by his method, found the fraction 2.094 551 47 (see his Method of infinite series
from which we can see that that method gives, in this case, an extremely exact result; but
would be wrong to assume we would always have such accuracy.

Horner like Transformations of Polynomial Equations

7.9 The Ruffini-Budan Schema

At the beginning of the 19th century ingenious techniques for the transformation 04
polynomials were developed, apparently independently, by three mathematiciani§
Ruffini (1804} [18], Budan (1807 and 1813} [4] and Horner (1819) [7]. These techs
niques, combined with the results on locating the roots of a polynomial, allowed
decimals of the required root to be determined by successive approximations, ofted§
digit by digit, with considerable saving in operations. :
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Traces of this method of evaluating a polynomial using this approach, are already
to be found in a text by Newton (see Section 5.1), however, a systematic method for
finding, not only the constant term, but also all the other coefficients of a trans-
formed polynomial Q(x) = P(x + u) did not properly appear before the beginning of
the 19th century. Mathematicians in the 18th century had not, in effect, succeeded in
finding a practical and simple way of transforming one equation into a second
equation, the roots of which were to be simply a constant added to each of the roots
of the first equation.

It would appear that Paolo Ruffini [18], at least in Europe, was the first to formu-
late an algorithm for the transformation of the coefficients of an equation. He was
followed, a little later, by Francois Budan [4]. Paclo Ruffini, a medical doctor and
professor of mathematics at Medina, is principally known for his wark on the impos-
sibility of solving algebraically equations of degree 5. Budan, who was a doctor of
medicine and professor of mathematics at Nantes, worked on the solution of poly-
nomials.

What follows are extracts from the work of both authors. To make the reading of
Ruffini’s extract easier, we make some remarks about the notation used by Ruffini.
The equation under consideration is

(4) AX"+BE T 4 G L+ S+ Tx + V=0
The following quantities are introduced:
P'=A P'=Pp+B=Ap+B P"=P'p+C=Ap’+Bp+C,...
PWHY = P H Y = Ap™ + Bp™ T 4. +Tp+V.

The notation PV does not therefore correspond with the derivative.
Ruffini also introduces:
d pie+t &D:i: ARk

w2t pmo_ * =
onmm.,x Nn.u.m 3dp

, et
and shows that:
CA.G HDcT:mu.T.mucc_ .Ncc —= NQTCNYT ~u8. .w:& — ,wof:ﬁ+.muca‘ etc.

The first formula in the text is equivalent to the Taylor series for a polynomial Z of
degree m:

" i {m)
E%n +E¥w+...+N|€
2 23 ml

d*Z

wher ivative Z® is gi =
e the derivative Z¥ is given as Lt

Zp+ =Z(p+Z'(ply+ yr

|
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