
CSC 270�
Survey of�

Programming Languages�
Sept 29, 2009

Dr. Stephen Bloch
sbloch@adelphi.edu

http://www.adelphi.edu/sbloch/class/270/

Review
•  Local definitions (of variables, functions,

structs…)
•  Generalizing functions w/extra parameters
•  Generalizing functions w/function parameters

–  remove-if
–  do-to-each
–  combine

•  Anonymous functions with lambda
•  Functions that return functions

Programs that interact with user
•  Our Scheme programs so far are called with input, and

they return an answer.
•  Many real-world programs have to hold a continuing

dialogue with user:
–  user says something
–  program responds
–  user responds to this
–  program responds to that
–  etc.

Programs that interact with user
•  Other programs need to produce output piece by piece
•  (list-primes)

–  2
–  3
–  5
–  7
–  11
–  13
–  user break

Text input & output�
(in Advanced Student language)

; display : object -> nothing, but prints the
object on the screen

(display 3)
(display (+ 3 4))
(display "hello there")
(display 'blue)
(display (make-posn 3 4))

Text input & output
; display-with-label : string obj -> nothing, but prints the string and the

object

"Examples of display-with-label:"
(define my-age 40)
(display-with-label "Age:" my-age)
"should print Age: 40"

Text input & output
; display-with-label : string obj -> nothing, but prints the

string and the object
(define (display-with-label label obj)

 (display label)
 (display obj)) <--- problem! 2 expressions!
"Examples of display-with-label:"
(define my-age 40)
(display-with-label "Age:" my-age)
"should print Age: 40"

Text input & output
; display-with-label : string obj -> nothing, but prints the

string and the object
(define (display-with-label label obj)
 (begin
 (display label)
 (display obj)))
"Examples of display-with-label:"
(define my-age 40)
(display-with-label "Age:" my-age)
"should print Age: 40"

Sequential programming

; begin : expr expr expr … -> object
; Evaluates each expression, ignoring the results, but

returns the result of the last one.
(begin
 (display (+ 3 4))
 (* 5 6))
"should display 7 and then return 30"
; Note: if last expression returns nothing (e.g.

display), so does begin.

Now you try it
(define-struct employee [name id salary])
; print-employee: employee -->nothing, but prints out the

employee's information, nicely formatted
"Examples of print-employee:"
(print-employee (make-employee "Joe" 7 54000))
"should print"
"Joe, employee #7, earns $54000/year."

My solution
(define-struct employee [name id salary])
; print-employee: employee -->nothing, but prints out the employee's

information, nicely formatted
(define (print-employee emp)
 (begin
 (display (employee-name emp))
 (display-with-label ", employee #" (employee-id emp))
 (display-with-label ", earns $" (employee-salary emp))
 (display "/year.")))

Changing the format

Now we want output in the form
Joe
Employee #7
$54000/year

Changing the format

Now we want output in the form
Joe
Employee #7
$54000/year
; newline : nothing -> nothing, but advances

display output to next line

My solution
(define-struct employee [name num salary])
; print-employee: employee -->nothing, but prints out the employee's

information, nicely formatted
(define (print-employee emp)
 (begin
 (display (employee-name emp))
 (newline)
 (display-with-label "Employee #" (employee-num emp))
 (newline)
 (display (employee-salary emp))
 (display "/year.")
 (newline)))

Also want to get input from user

; read : nothing -> object
; waits for user to type an expression, and

returns it
Try some examples: numbers, strings,

booleans, identifiers

Oddities about "read"

; read : nothing -> object
; waits for user to type an expression, and

returns it
; Note: variable names are treated as symbols,

not evaluated
; Function calls are treated as lists, with the

function being the first element
; 'x is treated as the function call (quote x)

Example

; repeat-input: nothing -> nothing
; Waits for user to type something, then displays it

twice on separate lines.

Example
; repeat-input: nothing -> nothing
; Waits for user to type something, then displays it twice on

separate lines.
(define (repeat-input)
 (local [(define input (read))]
 (begin
 (display input)
 (newline)
 (display input))))

Making this friendlier…
Wouldn't repeat-input be friendlier if it asked "What do you

want to repeat?"
; ask : string -> object
; prints the string, waits for input, and returns it
(define (ask question)
 (begin
 (display question)
 (read)))

Example
; repeat-input: nothing -> nothing
; Prompts for user to type something, then displays it twice on

separate lines.
(define (repeat-input)
 (local [(define input (ask "What do you want to repeat?"))]
 (begin
 (display input)
 (newline)
 (display input))))

Now you try it
; ask-posn : nothing -> posn
; Prompts "x coordinate?" and "y coordinate?" and puts inputs

together into a posn.
"Example of ask-posn:"
(ask-posn)
; should print "x coordinate?" You type 3
; should print "y coordinate?" You type 4
; should return (make-posn 3 4)
; Hint: you can use local, but you don't need to.

Changing variable values

(define toys empty)
(cons "ball" toys) "should be" (list "ball")
toys "is still" empty

Changing variable values
(define toys empty)
(cons "ball" toys) "should be" (list "ball")
toys "is still" empty
; add-toy : symbol -> nothing, but changes the value of toys
"Examples of add-toy:"
(add-toy "ball")
toys "should be" (list "ball")
(add-toy "nintendo")
toys "should be" (list "nintendo" "ball")

Changing variable values
; set! : variable expression -> nothing, but changes the

variable's value to be the expression
; Note: only works if the variable is already defined
; Convention: name ends in !, indicating that the function

changes at least one of its arguments
"Examples of set!:"
(define toys empty)
(set! toys (list "ball"))
toys "should be" (list "ball")
(set! toys (cons "nintendo" toys))
toys "should be" (list "nintendo" "ball")

Changing variable values

; add-toy : symbol -> nothing, but changes the value
of toys

(define (add-toy new-toy)�
(set! toys (cons new-toy toys)))

"Examples of add-toy:"
(add-toy "ball")
toys "should be" (list "ball")
(add-toy "nintendo")
toys "should be" (list "nintendo" "ball")

Now you try it
(define age 18)
; birthday : nothing -> nothing, changes age

"Examples of birthday:"
(birthday)
age "should be" 19
(birthday)
age "should be" 20

My solution
(define age 18)
; birthday : nothing -> nothing, changes age
(define (birthday)�

(set! age (+ 1 age)))
"Examples of birthday:"
(birthday)
age "should be" 19
(birthday)
age "should be" 20

Combining set! and begin
(define counter 0)
; count : nothing -> num
; returns 1 more each time you call it

"Examples of count:"
(count) "should be" 1
(count) "should be" 2
(count) "should be" 3

Combining set! and begin
(define counter 0)
; count : nothing -> num
; returns 1 more each time you call it
(define (count)
 (begin ; remember, returns the value of its last expression
 (set! counter (+ 1 counter))
 counter))
"Examples of count:"
(count) "should be" 1
(count) "should be" 2
(count) "should be" 3

A problem with set!

(define-struct person [name age shoe-size])
(define prof (make-person "Steve" 40 10.5))
(define me prof)
(set! me (make-person "Steve" 41 10.5))
prof "is still 40 years old!"
Problem: set! changes the variable, not the

object it refers to.

Modifying a structure

; set-person-age! : person num -> nothing, but
changes the age of the person

(define prof (make-person "Steve" 40 10.5))
(define me prof)
(set-person-age! me 41)
prof "is now 41 years old!"

Recall constructor, selector, and
discriminator functions�

for a structure type
(define-struct person [name age shoe-size])
; make-person : string num num -> person
; person-name : person -> string
; person-age : person -> num
; person-shoe-size : person -> num
; person? : object -> boolean

There are also mutator functions�
for a structure type

(define-struct person [name age shoe-size])
; make-person : string num num -> person
; person-name : person -> string
; person-age : person -> num
; person-shoe-size : person -> num
; person? : object -> boolean
; set-person-name! : person string -> nothing
; set-person-age! : person num -> nothing
; set-person-shoe-size! : person num -> nothing

(That's in Advanced Student. To get this
to work in PLAI language…)

(define-struct person [name age shoe-size]�
#:mutable #:transparent)

; make-person : string num num -> person
; person-name : person -> string
; person-age : person -> num
; person-shoe-size : person -> num
; person? : object -> boolean
; set-person-name! : person string -> nothing
; set-person-age! : person num -> nothing
; set-person-shoe-size! : person num -> nothing

Example
(define-struct employee [name num salary])
; give-raise! : emp num -> nothing, but changes the employee's salary by num%
(define (give-raise! emp percent)�

…
)

"Examples of give-raise!:"
(define joe (make-employee "Joe" 7 54000))
(give-raise! joe 10)
joe "should be" (make-employee "Joe" 7 59400)

Example
(define-struct employee [name num salary])
; give-raise! : emp num -> nothing, but changes the employee's salary by num%
(define (give-raise! emp percent)�

(set-employee-salary! emp�
 (* (employee-salary emp)�
 (+ 1 (/ percent 100)))))

"Examples of give-raise!:"
(define joe (make-employee "Joe" 7 54000))
(give-raise! joe 10)
joe "should be" (make-employee "Joe" 7 59400)

Another mutable data type:
vectors

(define days (vector 31 28 31 30 31 30 31 31 30 31 30 31))
(vector-ref days 3)
; returns # days in April, i.e. 30, like days[3] in Java
(vector-set! days 3 24)
; changes the # days in April to 24)
days ; returns (vector 31 28 31 24 31 30 31 31 30 31 30 31)

If you really want loops…
(do ((index 0 (+ 1 index))
 (total 0 (+ total (vector-ref days index)))
 ((>= index (vector-length days)) total)
 (display total)
 (newline))

If you really want loops…
(do ((var1 init-expr1 update-expr1)
 (var2 init-expr2 update-expr2) …)
 (stop-expr result-expr)
 action1 action2 …)

equivalent to Java

for (Object var1=init-expr1, var2=init-expr2, …;
 (! stop-expr);
 var1=update-expr1, var2=update-expr2, …) {
 action1; action2; …
 }
return result-expr;

If you really want loops…
But you're usually better off with recursion instead.

Summary of today
•  Text output: display, newline
•  Text input: read
•  Doing multiple things in sequence: begin
•  Changing value of a variable: set!
•  Changing a field of a struct:�

set-structname-fieldname!
•  Vectors
•  do-loops

