The Molly Scripting Language

The Molly Scripting Language is meant to create an easy to use text based format for creating the Forms created by Visual Basic. Through the simple to execute Form, Section, and object declarations, a fully visible Visual Basic compatible Form is created once the Form file is passes through Molly. The guidelines for creating a Form are explained in the rest of this document. A small note: to comment out text, put a single quote at the before all that is to be commented out on a line. For example:
CommandButton
cmd1

Caption
=
“Calculate”

END
‘ closing the CommandButton
Starting a Form

Forms in The Molly Scripting Language are meant to be handled similarly to the options a programmer has while creating a Form in Visual Basic. Therefore many of the options found in Visual Basic have been translated into simple keywords in Molly. Within the Form declaration there is much control over the rest of the Form’s layout and positioning. The three properties which make up the Form header (Location, Caption, and Organization) actually contain four controls that are used in the Form’s make up. The header of the Form starts with the word Form and then an identifier which will serve as the Form’s name in Visual Basic. This name must be unique to this Form so that no naming conflicts occur and errors avoided. The Visual Basic naming standard follows these examples: frm1 or frmSample. Following this line comes the next three lines of properties, each on new lines.
Location: The Location property contains two controls: vertical positioning of the Form and horizontal positioning of the Form. This gives you control over where the Form will be placed upon the screen when it is Run in Visual Basic. The format for Location is: Location = vertical horizontal, where the vertical attribute can be Top, Middle, or Bottom, and the horizontal attribute can be Left, Center, or Right. This allows full control over the positioning of the Form on the screen. Once the Location property has been filled in, the next line of code is set for the Form’s Caption property.
Caption: The Caption property of the Form is similar to the Caption property for all the objects which may appear in the Form itself. The character string that is typed in this property will be the text which appears at the top of the Form. This string of characters must be enclosed in quotation marks and can contain any alphanumeric character. To implement the Form’s Caption, one must type: Caption = “string” where the string is the desired caption. Once the Caption is set, a new line is required to start the next Form property, the Organization:
Organization: The Organization is a very important property because it will determine the lay out of the entire Form. From here the programmer can decide to make the Form’s Sections row or column oriented. In a row oriented Form, the Sections will be stacked from the top down and objects will be placed horizontally from left to right in each Section. In a column oriented Form, the Sections will be placed from left to right and the objects within each Section will be placed from the top down. The implementation of the Organization property is done like so: Organization = organization where organization is either Rows or Columns.

The closing of a Form comes with an END on the last line of the entire Form, and this will most usually come after all the Sections and objects are declared within the Molly compatible Form file. With this, the Form is now ready to have Sections created within it. A Form declaration should resemble this one:

Form frmSample

Location
=
Top
Left

Caption
=
“Sample Form”

Organization
=
Columns

Section Declaration(s)

END

Once the Form header is completed, the Section declarations can begin. These Section declarations are described below.
Section Declarations

A Section in The Molly Scripting Language is a grouping of objects that will remain in the same column or row, depending on the Form organization. Section declarations are a necessary part of The Molly Scripting Language and therefore it is implemented in a very simple way. Once the Form’s attributes have been set, then a Section can be declared. To do this, simply typing Section on a new line will start a Section. After this, the Form is ready to receive any object information within this Section. Once all the objects desired are coded into the Section, the closing of the Section is needed. This is done by typing END at the closing. A Section within a Form should appear much like this example:
Form frmSample
Location = Middle Center

Caption = "Example for Section Declarations"

Organization = Columns

Section

Object Declarations

END ‘ End of Section

END ‘ End of Form

Remember, there cannot be a Section within a Section. An “empty” Section will allocate space within the Form for objects even if no objects exist within the Section. Sections will run the entire horizontal length or vertical length of a Form depending on whether the Form’s organization is Rows or Columns, respectively.
Command Button Declaration
The Command Button’s in The Molly Scripting Language are the simplest objects to implement in one’s code because of its lack of many properties. Like every object, a Command Button must be placed within a Section but may not be placed within a Frame. The Command Button consists of its object declaration, CommandButton, followed by a unique identifier which will be used as the object’s name when translated into the Visual Basic Script. Therefore, every Command Button must differ in their identifiers to avoid a VB error. To keep with the Visual Basic standards, it is recommended that the user names their Command Button’s in this manner: cmd1 or cmdCalculate. This will assist users reading from Visual Basic to Molly and vice versa.
Caption: A Command Button has one property that can be filled in by the user. This property is the Caption of the Command Button. The string of characters which will be the Caption for the Command Button must be enclosed in quotation marks. The Caption is the text which appears on the Command Button when the Form is produced in Visual Basic. The Caption property is implemented like so: Caption = “String”.
The Command Button object is concluded by an END, like all Sections and objects. Therefore a completed Command Button, within a Section, in the Molly readable text file should appear as such:

CommandButton
cmd1

Caption
=
“Command 1”

END
Any object may follow a Command Button. All Command Buttons will be centered within the row or column in which it is situated on the form.
ComboBox Declarations
The ComboBox declaration, like the Command Button, has only one property that the user can set directly through the Molly readable text form. The ComboBox must be within a Section declaration and may follow any object, but cannot be within a Frame. The ComboBox declaration must be started with, ComboBox, and then is followed by its unique identifier. This identifier must have a differing name from any other object in the Form to prevent Visual Basic errors. To be consistent with Visual Basic naming standards, the ComboBox identifier should start with cboI. For example: cbo1 or cboMenu.
Width: The one property of the ComboBox that can be initialized through the Molly scripting text is Width. The three width choices for the width are: Small, Medium, and Large. Molly will automatically space out and center the ComboBox in either Column or Row Form organizations. The Width property is implemented like this: Width = width where width is either Small, Medium, or Large. Like all objects, the ComboBox object must be closed with an END. A completed ComboBox declaration will resemble this sample in form:

ComboBox
cboSample

Width

=
Small

END

Any object may follow a ComboBox provided the Form has space enough for another object.
Frame Declaration

The Frame declaration is similar to the declarations of the other objects covered already in that it must be declared within a Section, just like all objects. Declaring a Frame starts with “Frame” and then is followed by an identifier. This name should be unique to this frame and should follow the Visual Basic naming standards; therefore a Frame name should resemble fra1 or fraOptions. This will allow people who know the Visual Basic object naming to more easily follow and understand a Molly scripting language file.

Caption: The Caption of a Frame will appear on the Visual Basic Form as the visible text on the Frame itself. This string of characters must be enclosed in quotation marks to be processed by Molly without producing an error. The Caption must be the first property in the Frame and is then followed by Option Button declarations, if any. The Caption property is implemented like so: Caption = “String”.

A Frame is a unique object because it can contain one or more Option Button objects within its confines. A Frame can contain no Option Buttons as well. Yet a Frame cannot hold any objects other than Option Buttons. The Frame must close with an END. An empty completed Frame would resemble this Frame declaration:
Frame
fraSample

Caption
=
“Frame Sample”

END

A Frame with one or more Option Button’s will resemble this sample Frame:

Frame
fraSample2

Caption
=
“Frame Sample”

OptionButton optSample

Caption
=
“Option 1”

END

END

Keeping track of the “END”s in a Frame could be confusing, so it is recommended to not rush this process. Indentations in the code may assist in visualizing what END closes which object. Like all objects, any object may follow a Frame assuming there is enough room left in the Form.
Option Button Declarations

The Option Button object differs from other objects in two ways. It is the only object which can be declared within a Frame and it can remain invisible in the final Visual Basic Form. Any Option Button will be located within a Frame in the final Visual Basic Form. An Option Button can only be declared within a Frame. The declaration starts with “OptionButton” and is followed by a unique identifier. This identifier will serve as the Option Button’s name within Visual Basic; therefore it must be unique to this object. Centering and positioning is determined by the Frame and all Option Button’s will be centered within the Frame. If the Form organization is Columns, then the Option Buttons will be positioned one below the other and ordered from top to bottom. If the Form organization is Rows, the Option Buttons will be ordered from left to right.
Caption: The Caption of an Option Button will appear on the Visual Basic Form as the visible text next to the button itself. This string of characters must be enclosed in quotation marks to be processed by Molly without producing an error. The Caption must be the first property in the Option Button and is then followed by the Visible property. The Caption property is implemented like so: Caption = “String”.

Visible: Unlike other objects, the Option Button can remain visible or invisible. The Visible property must come after the Caption property of the Option Button. A visible Option Button will be placed within the Frame in its correct position respective to other Option Button declarations, while an invisible Option Button will be placed in a default position and will not influence the Frame size. To declare an Option Button as visible or invisible, the Boolean value of True or False must appear in that property. The Visible property is implemented like this: Visible = Boolean where Boolean is True or False. More than one invisible Option Button will stack in the Visual Basic Workspace and may not “appear”, but will merely be underneath another Option Button.

Like all objects, the Option Button will need to be closed with an END. Therefore, a finished visible Option Button format will appear like this:

OptionButton
optSample

Caption
=
“Option 1”

Visible

=
True

END

An example of 2 Option Buttons within a Frame, one visible, the other invisible:

Frame
fra1

Caption
=
“Frame Sample”

OptionButton
optSample

Caption
=
“Option 1”

Visible

=
True

END

OptionButton
optSample2

Caption
=
“Invisible”

Visible

=
False

END

END

Following the Option Buttons must be the END correlating to the closing of the Frame.
CheckBox Declarations

The Check Box is one of the larger objects that can be declared. It is larger in that it has 3 properties which the user can determine for the Check Box. The Check Box must be declared within a Section and must start off with “CheckBox” followed by an identifier. This identifier will be its name within the Visual Basic Workspace and therefore must be unique in its naming to prevent any errors. The naming standard for CheckBoxes upheld by most Visual Basic programmers is: chk1 or chkYes, or something to this affect.
Caption: The Caption property for the Check Box is the text which will appear next to the actual Check Box. Quotation marks must be around the character string for Molly to process the information correctly. The Caption must be the first property in the Check Box declaration. The Caption property is implemented like so: Caption = “String”. After the Caption property, the Height property follows on a new line.
Height: The Height property is determinant of how many lines of text can be created in the Visual Basic Form version of the Check Box. The Caption property will only fill 1 line of possible text space, but this can be changed in Visual Basic itself. The format for Height is: Height = n where 1 <= n <= 5. All centering and spacing will be completed by Molly dynamically based on the Height determined by the user. Following the Check Box Height property is the Width property on a new line.
Width- Following the Check Box’s Height property is the Width property. The Width property determines how large horizontally the Check Box will be. The three choices of Width are Small, Medium, or Large. All centering issues based on the differing sizes are handled by Molly. The Width property is implemented in this manner: Width = width where width is equal to Small, Medium, or Large.

Following all these properties, the Check Box closes with END. A completed Check Box should appear similarly to this example in structure:

CheckBox
chkSample

Caption
=
“CheckBox Sample”

Height

=
3

Width

=
Medium

END

Any object may follow a Check Box provided that the Form has enough room to spare more objects.

Text Box Declarations

The Text Box is a more complicated object than most others because while Molly handles the declaration as one object, Visual Basic will receive the information for two objects: the Text Box and a Label. The Label will always appear to the left of its correlating Text Box and will be centered vertically and horizontally no matter the Text Box size or positioning on a Form. Declarations for a Text Box must come within a Section declaration and must end before the Section is ended as well. The three properties of a Text Box that can be set by the user are Height, Width, and Label. The start of a Text Box declaration is: TextBox identifier where the identifier is a name unique to this Text Box. A unique name will allow an error free conversion from the Molly scripting language to the Visual Basic Form. By using the Visual Basic naming standards for Text Box declarations, errors of this sort can be avoided. Some examples of Text Box identifiers using this naming standard are: txt1 or txtInput. Following the first line of the Text Box declaration is the first property, Height.
Height: The Height property alters the Text Box’s amount of lines for which text will appear in the final Visual Basic Form. The format for coding the Height property of a Text Box is (on a new line): Height = n where n = 1, 2, 3, 4, or 5. Any numbers greater, lower or between these integers will not be handled correctly by Molly and may produce an incorrect Form. Changing the Height will not influence the Height of the Label and will only reposition the Label that it remains vertically centered with the Text Box. Following the Height property is the Width property on a new line.
Width: The Width property controls the horizontal length of the Text Box. Changing the Width will allow more or less text space within the Text Box when in the Visual Basic Workspace. The Text Box’s Label will shift horizontally depending on the Width size, but will not change in its width at all. The format for coding the Width property of a Text Box is: Width = size where the size is either Small, Medium, or Large. Following the Width property on a new line is the Label property.
Label: The Label property of a Text Box has no effect on the Text Box object in Visual Basic. Where it does its influence is in the Text Box’s corresponding Label. The string of characters in this property will show as the text in the Label when viewed as the Visual Basic Form. The format for implementing the Label property of a Text Box is: Label = “string” where the string is any combination of alphanumeric symbols.

A completed Text Box declaration will appear similar to this example:

TextBox
txtSample

Height

=
3

Width

=
Medium

Label

=
“Text Box Sample”

END

The closing of the Text Box declaration is cued by an END. Any object may follow a Text Box provided that the Form has adequate room to fit more objects.
