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What is Semantic Analysis?

• Semantic analysis is the task of ensuring 
that the declarations and statements of a 
program are semantically correct, i.e, that 
their meaning is clear and consistent with 
the way in which control structures and data 
types are supposed to be used.



What Does Semantic Analysis Involve?

• Semantic analysis typically involves:
– Type checking – Data types are used in a manner that 

is consistent with their definition (i. e., only with 
compatible data types, only with operations that are 
defined for them, etc.)

– Label Checking – Labels references in a program must 
exist.

– Flow control checks – control structures must be used 
in their proper fashion (no GOTOs into a FORTRAN 
DO statement, no breaks outside a loop or switch 
statement, etc.)

Where Is Semantic Analysis 
Performed in a Compiler?

• Semantic analysis is not a separate module within a 
compiler.  It is usually a collection of procedures 
called at appropriate times by the parser as the 
grammar requires it.

• Implementing the semantic actions is conceptually 
simpler in recursive descent parsing because they 
are simply added to the recursive procedures.

• Implementing the semantic actions in a table-
action driven LL(1) parser requires the addition of 
a third type of variable to the productions and the 
necessary software routines to process it.



What Does Semantic Analysis Produce?

• Part of semantic analysis is producing some sort of 
representation of the program, either object code 
or an intermediate representation of the program.

• One-pass compilers will generate object code 
without using an intermediate representation; code 
generation is part of the semantic actions 
performed during parsing.

• Other compilers will produce an intermediate 
representation during semantic analysis; most 
often it will be an abstract syntax tree or 
quadruples.

Semantic Actions in Top-Down Parsing: An 
Example

Imagine we’re 
parsing:
S → id := E
E → T E’
E’ → + T   E’
E’ → ε
Τ → F T’
T’ → * F   T’
T’ → ε
F    → id
F    → const
F    → ( E )

We insert the actions
S → id {pushid}:= {pushassn} E{buildassn}
E → T E’
E’ → + {pushop} T {buildexpr} E’
E’ → ε
Τ → F T’
T’ → * {pushop} F {buildterm} T’
T’ → ε
F    → id {pushid}

F    → const {pushconst}

F    → ( E ) {pushfactor}



Example: Parsing An Expression

In parsing the expression 
z := 2 * x + y, we 
find this parse structure:

We want to create the
AST fragment: id

:=

E’T
id E

S

:=

T’F
const T’F

id ε

E’T
*

+

id ε

+
*

const id
id

Parsing z := 2*x + y (continued)

Or we can produce a set of quadruples:
t1 := 2 * x
t2 := t1 + y
z := t2

Or we an produce a set of assembly language 
instructions:

mov ax, 2
mov bx, y
imul bx
mov z, ax



Building the AST

z := 2 * x + y S → id {pushid}:= {pushassn} E{buildassn}

Semantic Stack

id (z)

Building the AST (continued)

z := 2 * x + y S → id {pushid}:= {pushassn} E{buildassn}

Semantic Stack

id (z)

:=



Building the AST (continued)

z := 2 * x + y

F    → const {pushconst}

Semantic Stack

id (z)

:=

const (2)

S → id {pushid}:= {pushassn} E{buildassn}

E → T E’

T → FT’

Building the AST (continued)

z := 2 * x + y

T’ → * {pushop} F {buildterm} T’

Semantic Stack

id (z)

:=

*

const (2)

S → id {pushid}:= {pushassn} E{buildassn}

E → T E’

T → FT’



Building the AST (continued)

z := 2 * x + y

F    → id {pushid}

Semantic Stack

id (z)

:=

*

const (2)

id (x)

T’ → * {pushop} F {buildterm} T’

S → id {pushid}:= {pushassn} E{buildassn}

E → T E’

T → FT’

Building the AST (continued)

z := 2 * x + y

T’ → * {pushop} F {buildterm} T’

Semantic Stack

id (z)

:=

*

const (2) id (x)

S → id {pushid}:= {pushassn} E{buildassn}

E → T E’

T → FT’



Building the AST (continued)

z := 2 * x + y

E’ → + {pushop} T {buildexpr} E’

Semantic Stack

id (z)

:=

*

const (2) id (x)

+

S → id {pushid}:= {pushassn} E{buildassn}

E → T E’

Building the AST (continued)

z := 2 * x + y

F    → id {pushid}

Semantic Stack

id (z)

:=

*

const (2) id (x)

+

id (y)

E’ → + {pushop} T {buildexpr} E’

S → id {pushid}:= {pushassn} E{buildassn}

E → T E’

T → FT’



Building the AST (continued)

z := 2 * x + y

E’ → + {pushop} T {buildexpr} E’

Semantic Stack

id (z)

:=

*

const (2) id (x)

+

id (y)

S → id {pushid}:= {pushassn} E{buildassn}

E → T E’

Building the AST (continued)

Semantic Stack

id (z)

:=

*

const (2) id (x)

+

id (y)

z := 2 * x + y S → id {pushid}:= {pushassn} E{buildassn}



Decorating the AST

• Abstract syntax trees have one enormous 
advantage over other intermediate 
representations: they can be “decorated”, 
i.e., each node on the AST can have their 
attributes saved in the AST nodes, which 
can simplify the task of type checking as the 
parsing process continues.

What is an Attribute Grammar?

• An attribute grammar is an extension to a context- free 
grammar that is used to describe features of a 
programming language that cannot be described in BNF or 
can only be described in BNF with great difficulty.

• Examples
– Describing the rule that real variables can be assigned 

integer values but the reverse is not true is difficult to 
describe completely in BNF.

– Sebesta says that the rule requiring that all variable 
must be declared before being used is impossible to 
describe in BNF.



Static vs. Dynamic Semantics

• The static semantics of a language is indirectly 
related to the meaning of programs during 
execution.  Its names comes from the fact that 
these specifications can be checked at compile 
time.

• Dynamic semantics refers to meaning of 
expressions, statements and other program units.  
Unlike static semantics, these cannot be checked 
at compile time and can only be checked at 
runtime.

What is an Attribute?

• An attribute is a property whose value is assigned 
to a grammar symbol.

• Attribute computation functions (or semantic 
functions) are associated with the productions of a 
grammar and are used to compute the values of an 
attribute.

• Predicate functions state some of the syntax and 
static semantics rules of the grammar.



Types of Attributes

The most common types of attributes that we may wish to 
note for each symbol are:

• Type – Associates the data object with the allowable set of 
values.

• Location – may be changed by the memory management 
routine of the operating system.

• Value – usually the result of an assignment operation.
• Name – can be changed as a result of subprogram calls and 

returns
• Component – data objects may be composed of several 

data objects. This binding may be represented by a pointer 
and subsequently changed.

Definition of an Attribute Grammar

An attribute grammar is defined as a grammar with the 
following added features:

• Each symbol X has a set of attributes A(X).
• A(X) can be:

– extrinsic attributes, which are obtained from outside the 
grammar, mostly notably the symbol table.

– synthesized attributes, which are passed up the parse 
tree

– inherited attributes which are passed down the parse 
tree

• Each production of the grammar has a set of semantic 
functions and a set of predicate functions (which may be 
an empty set).



Synthesized Attributes

id (z)
type
= real

:=
type
= real

*
type
= real

const (2)
type = int

id (x)
type
= real

Inherited Attributes

real

id (y)
type
= real

id (z)
type
= real

id (x)
type
= real

Decl → Type {pushtype}IdList;
Type → real
Type → int
IdList → id {addtotree}IdList’
IdList’ → , id {addtotree} IdList’
IdList’ → ε

Example:
real x, y, z;



Attribute Rules

• Let’s rewrite our grammar, assuming that 
variables are implicitly as in Fortran:

S → id := E Rule: IF id.reqd-type = int
AND E.type = real
THEN TypeError(S, E)

E → T E’ Rule: IF T.type = E’.type
THEN E.type := T.type
ELSE E.type = real

E1’ → + T   E2’ Rule: IF E2’.type = T.type
THEN E1’.type := T.type
ELSE E1’.type = real

E’ → ε

Attribute Rules (continued)

Τ → F T’ Rule: IF F.type = T’.type
THEN T.type := F.type
ELSE T.type = real

T1’ → * F   T2’ Rule: IF F.type = T2’.type
THEN T1’.type := F.type
ELSE T1’.type = real

T’ → ε
F    → id Rule: F.type := id.type
F    → const Rule: F.type := const.type
F    → ( E ) Rule: F.type := E.type



Implementing the Rules

In a semantic actions are to be handwritten, we can 
incorporate them in the existing actions:

• The rule “IF id.reqd-type = E.type THEN id.type = 
E.type ELSE TypeError(S, E)” is incorporated in the 
procedure BuildAssn

• The rule “IF T.type = E’.type THEN E.type := T.type
ELSE  E.type = real” is incorporated in a new procedure 
called SetExprType, which is placed at the end of the 
production E → TE’

• We can place the other rules in action procedures placed 
at the end of their respective productions.

Decorating the AST

z := 2 * x + y S → id {pushid}:= {pushassn} E{buildassn}

Semantic Stack

id (z)
id.reqd-type = real



Decorating the AST (continued)

z := 2 * x + y S → id {pushid}:= {pushassn} E{buildassn}

Semantic Stack

:=

id (z)
id.reqd-type = real

Decorating the AST (continued)

z := 2 * x + y F    → const {pushconst}

Semantic Stack

:=

const (2)
const.type = int

id (z)
id.reqd-type = real



Decorating the AST (continued)

z := 2 * x + y T’ → * {pushop} F {buildterm} T’

Semantic Stack

:=

*

const (2)
const.type = int

id (z)
id.reqd-type = real

Decorating the AST (continued)

z := 2 * x + y F    → id {pushid}

Semantic Stack

:=

*

id (x)
id.type = real

id (z)
id.reqd-type = real

const (2)
const.type = int



Decorating the AST (continued)

z := 2 * x + y T’ → * {pushop} F {buildterm} T’

Semantic Stack

:=

*

id (x)
id.type = real

const (2)
const.type = int

id (z)
id.reqd-type = real

Decorating the AST (continued)

z := 2 * x + y E’ → + {pushop} T {buildexpr} E’

Semantic Stack

:=

*

+

id (z)
id.reqd-type = real

id (x)
id.type = real

const (2)
const.type = int



Decorating the AST (continued)

z := 2 * x + y F    → id {pushid}

Semantic Stack

:=

*

+

id (y)
id.type = real

id (z)
id.reqd-type = real

const (2)
const.type = int

id (x)
id.type = real

Decorating the AST (continued)

z := 2 * x + y E’ → + {pushop} T {buildexpr} E’

Semantic Stack

:=

*

+

id (z)
id.reqd-type = real

const (2)
const.type = int

id (x)
id.type = real

id (y)
id.type = real



Decorating the AST (continued)

Semantic Stack

:=

*

+id (z)
id.reqd-type = real

const (2)
const.type = int

id (x)
id.type = real

id (y)
id.type = real

z := 2 * x + y S → id {pushid}:= {pushassn} E{buildassn}

Implementing Semantics Actions In 
Recursive-Descent Parsing

• In a recursive-descent parser, there is a separate 
function for each nonterminal in the grammar.
– The procedures check the lookahead token against the 

terminals that it expects to find.
– The procedures recursively call the procedures to parse 

nonterminals that it expects to find.
– We now add the appropriate semantic actions that must 

be performed at certain points in the parsing process.



Processing Declarations

• Before any type checking can be performed, 
type must be stored in the symbol table.  
This is done while parsing the declarations.

• When processing the program’s header 
statement:
– the program’s identifier must be assigned the 

type program
– the current scope pointer set to point to the 

main program.

Processing Declarations

• Processing declarations requires several actions:
• If the language allows for user-defined data types, 

the installation of these data types must have 
al;ready occurred.

• The data types are installed in the symbol table 
entries for the declared identifiers.

• The identifiers are added to the abstract syntax 
tree.



Adding Declarations to the AST
real x, y, z;

Semantic Stack

Decl → Type {pushtype}IdList;

real

Adding Declarations to the AST (continued)

real x, y, z;

Semantic Stack

real

IdList → id {addtotree}IdList’

id (x)
type = real



Adding Declarations to the AST (continued)

real x, y, z;

Semantic Stack

real

IdList’ → , id {addtotree} IdList’

id (x)
type = real

id (y)
type = real

Adding Declarations to the AST (continued)

real x, y, z;

Semantic Stack

real

IdList’ → , id {addtotree} IdList’

id (x)
type = real

id (y)
type = real

id (z)
type = real


