CSC 270 — Survey of
Programming Languages

C++ Lecture 2 — Strings

Predefined Functions in <estring>

strcpy (s, t)
strncpy(s, t, n)

strcat (s, t)

strncat (s, t, n)
strlen (s)

strcmp (s, t)

strncmp(s, t, n)

Copies s into t

Copies s into t but no more
than n characters are copies

Concatenates t to the end of s

Concatenates t to the end of s
but no more than n characters

Returns the length of s (not
counting \0”)
Returns 0 if s ==

<0ifs<t
>0ifs>t

Same as strcmp but compares
no more than n characters

No bounds checking

Not implemented in all
versions of c++

No bounds checking

Not implemented in all
versions of c++

No bounds checking

Not implemented in all
versions of c++

C-String: Input and Output

* In addition to cin >> and cout <<, there are
other input and output methods available when
working with strings:

— getline()
—get ()

— put ()

— putback ()
— peek()

— ignore ()

getline ()

e getline () allows the user to read in an entire line of
text at a time, or no more than n characters:
char a[80], s[5]1;
cout << "Enter a line:"
cin.getline(a, 80);
cout << "Enter a short word:";
cin.getline(s, 5);
cout << "\'" << a << "\'\n\'" << s

<< n\vn << endl;

* In both cases, one character less is actually read in to
leave room for '\0'

getline () — An Example

Enter a line:

Do be do to you!
Enter a short word
Do be Do to you!

Do be Do to you!Do b

get ()

* The function get () allows the user to read in every
character typed, including whitespace characters.
* Use:
char nextChar;
cin.get (nextSymbol) ;
» get() reads blanks and newlines as well as other
characters:
char cl, c2, c3
cin.get (cl); cin.get (c2); cin.get(c3);

 If you had entered “AB\nCD”, c3 would contain
the newline.

CheckInput. cpp

#include <iostream>

using namespace std;

void newLine (void);

// Discards all the input remaining on the current
input line.

// Also discards the '\n' at the end of the line.

void getInt (int & number);
// Sets the variable number to a
// value that the user approves of

int main(void)
{

int n;
getInt (n);
cout << "Final value read in == " << n << "\n"

<< "End of demonstation." << endl;

return(0);

// Uses iostream:
void newLine (void)
{

char symbol;

do {
cin .get (symbol);
} while (symbol != '\n');

//Uses iostream
void getInt (int &number)
{

char ans;

do {
cout << "Enter input number: ";
cin >> number;

cout << "You entered " << number

<< " Is that correct (yes/no):

cin >> ans;
newLine () ;

} while ((ans == 'N') || (ans == 'n'));

put ()

« put () allows the program to print a single
character.

* It does not do anything that cannot be done
using <<.

* Example
cout.put('a');

putback ()

* Sometimes your program needs to know what
the next character in the input stream is going
to be, but it may not be needed here.
Therefore your program needs to be able to
“put back’ that next character.

* putback() allows your program to return a
character to the input stream.

if ((¢ >= '0') && (c <= '9'))
{
cin.putback (c);
cin >> n;
cout << "You have entered number " << n << endl;
}
else
{
cin.putback (c);
cin >> str;
cout << " You have entered word " << str
<< endl;

return O;

peek ()

peek() returns the next character in the input
stream without actually removing it from the
input steam — it allows you a “peek” at what
comes next.

peek () — An Example

// istream peek
#include <iostream>

using namespace std;

int main () {
char c;
int n;
char str[256];

cout << "Enter a number or a word: ";

4

c=cin.peek();

if ((¢ >= '0') && (c <= '9"))
{
cin >> n;
cout << "You have entered number " << n << endl;

}

else

{
cin >> str;
cout << " You have entered word " << str
<< endl;

return O;

ignore ()

« ignore () skips up to n characters, or until it
encounters a particular character of the
programmer’s choosing, which ever comes
first.

ignore () — An Example

// istream ignore
#include <iostream>

using namespace std;

int main () {
char first, last;

cout << "Enter your first and last names: ";

first=cin.get ();

cin.ignore (256,' ');

last=cin.get () ;

cout << "Your initials are " << first << last;

return O;

}

Character-manipulating Functions

* There are several operations that you may need
for basic text manipulation and are most
commonly performed character by character.

* These functions have their prototypes in the
cctype header file.

* Using these methods requires that
#include <cctype>

be included in the program using them

10

Functions in <cctype>

[Fusction | Dewcrigion [amge

toupper (c) Returns the upper case c = toupper(‘a’);
version of the character

tolower(c) Returns the lower case c = tolower('A’);

version of the character
isupper (c) Returns true if ¢ is an if (isupper (c))

upper case letter cout << ‘upper case’;
islower(c) Returns true if c is an if (islower(c))

lower case letter cout << ‘lower case’;

isalpha (c) Returns true if ¢ is a letter if (isalpha(c))
cout << “it’s a letter”;

isdigit (c) Returns true if c is a digit if (isalpha(c))
(0 through 9) cout << “it’s a number”;

Functions in <cctype> (continued)
[Function | Description _______|Example __|

isalnum(c) Returns true if ¢ is if (isalnum(‘3’))
alphanumeric cout << “alphanumeric”;
isspace (c) Returns true if ¢ is a white while (isspace(c))
space character cin.get (c);
ispunct (c) Returns true if ¢ is a if (ispunct(c))
printable character other than cout << “punctuation”;

number, letter or white space

isprint (c) Returns true if c is a
printable character

isgraph (c) Returns true if ¢ is a
printable character other an
white space

isctrl (c) Returns true if ¢ is a control
character

11

Pitfall: toupper and tolower return int
value

* In many ways, C and C++ consider characters
to be 8-bit unsigned integers. For this reason,
many string functions return an int value.

e Writing cout << toupper('a'); will not
write ‘A’ but the numeric code that represents

(4 b

A,
* To get the desired result write
char ¢ = toupper('a');
cout << c;

The string class

e Up until now, we have been using C-strings,
which are arrays of characters ended with a
null byte.

* The class string is defined in the library
<string> and allows you to use strings in a
somewhat more natural way.

* You can use = as an assignment operator and +
as a concatenation operator.

ants.cpp

#include <iostream>

#include <string>

using namespace std;

int main (void)
{

string phrase; //uninitialized

// The following ARE BOTH initialized
string adjective("fried"), noun("ants");

string wish = "Bon appetite";

// + is used for concatenation

phrase = "I love " + adjective + " " + noun
+ H!H;

cout << phrase << endl;

cout << wish << endl;

return 0;

Output
I love fried ants!

Bon appetite

13

I/O with string

* You can use the insertion operator >> and
cout to print string objects just as you would
do with any other data item.

* You can use the extraction operator << and
cin to read string objects, but << will skip
initial whitespace and then read only until the
next whitespace character.

* If you wish to read input including the

whitespace, you need to use the method
cin.get ()

motto.cpp
// Demonstrates getline and cin.get
#include <iostream>
#include <string>

using namespace std;

void newline();

int main (void)

{
string firstName, lastName, recordName;
string motto

= "Your records are our records.";

14

cout << "Enter your first and last name:";
cin >> firstName >> lastName;

newLine () ;

recordName = lastName + ", " + firstName;
cout << "Your name in our records is: ";

cout << recordName << endl;

cout << "Our motto is\n"
<< motto << endl;
cout << "Please suggest a better "

<< " (one line) motto:\n";

getline(cin, motto);
cout << "Our new motto will be:\n";

cout << motto << endl;

return (0) ;

// Uses iostream

void newLine (void)

char nextChar;

do {
cin.get (nextChar);
} while (nextChar !'= '\n');

15

more Versions of getline

 getline(cin, line); will read until the
newline character.

 getline(cin, line, '?'); will read until
the '?"'.

* getline(cin, sl) >> s2;
will read a line of characters into s1 and then

store the next string (up to the next
whitespace) in s2.

Mixing cin << variable with getline

* Consider
int n;
string line;
cin >> n;
getline(cin, 1line);
will read a value into n but nothing in line because it
1s holding the remainder of the line from which n’s
value comes for the next use of cin.

16

String Processing with string

* The string class lets you use the same
operations that C-string allow and then some.
* E.g
string sl;
sl.length - returns the length of the string s1.

lastName[i] is the ith character in the string.

NameArray.cpp

// Demonstrates using a string object as if it were
// an array

#include <iostream>

#include <string>

using namespace std;

int main (void)
{

string firstName, lastName;

cout << "Enter your first and last name:\n";

cin >> firstName >> lastName;

17

cout << "Your last name is spelled:\n";
unsigned i;
for (i = 0; i < lastName.length(); i++)

n me.
4

cout << lastName[i] <<

lastName[i] = '-

T .
4

cout << endl;

for (i = 0; i < lastName.length(); i++)
// Places a "-" under each letter

n n ;

cout << lastName[i] <<
cout << endl;

cout << "Good day, " << firstName << endl;

return (0) ;

Output

Enter your first and last name:
Robert Siegfried

Your last name is spelled:
Siegfried

Good day, Robert

18

Member Functions of the string class

Constructors
string str
string str("string");

string str(aString);

Element Access
str[i]

str.at (i)

str.substr (position,
length)

Default constructor — creates empty string object str
Creates a string object with data "string"

Creates a string object that is a copy of aString,
(which is a string object)

Returns read/write reference to character in str at index
i

Returns read/write reference to character in str at index
i

Return the substring of the calling object starting at
position and having length characters

Member Functions of the string class

Assignment/Modifiers
string strl = str2;
strl += str2;
str.empty () ;

strl + str2
str.insert (pos, str2)

str.remove (pos,
length)

Allocates space and initializes it to strl’s data,
releases memory allocated to strl and sets strl's size
to that of str2.

Character data of str2 is concatenated to the end of
stril; the size is set appropriately

Returns true if str is an empty string; returns false
otherwise

Returns a string that has str2’s data concatenated to
the end of stri1’s data. The size is set appropriately

Inserts str2 into str beginning at position pos

Removes a substring of size length beginning at
position pos

19

Member Functions of the string class

Comparisons

strl == str2 Compare for equality or inequality; returns a

strl != str2; Boolean value.

strl < str2 strl > str2 Four comparisons. All are lexicographical

strl >= str2 strl <= str2; comparisons

str.find(strl) Returns index of the first occurrence of strl in
str.

str.find(strl, pos) Returns index of the first occurrence of strl in

str; the search starts at position pos.

str.find first of(strl, pos) Returns index of the first instance of any
character in strl; the search starts at position

pos.
str.find first not_of (pos, Returns index of the first instance of any
length) character not in strl; the search starts at
position pos

palindrome. cpp

// Test for palindrome property
#include <iostream>

#include <string>

#include <cctype>

using namespace std;

// Interchanges the values of vl and v2
void swap (char &vl, char &v2);

// Returns a copy of s but with characters in
// reverse order

string reverse (const string é&s);

20

// Returns a copy of s with any occurrences of
// characters in the string punct removed.
string removePunct (const string &s,

const string &punct);

// Returns a copy of s that has all uppercase
// characters changed to lowercase, with other
// characters unchanged

string makeLower (const string &s);

// Returns true if s is a palindrome;
// false otherwise
bool isPal (const string &s);

int main (void) {

string str;

cout << "Enter a candidate for palindrome "
<< "test followed by press Return."
<< endl;

getline(cin, str);

if (isPal(str))
cout << "\"" << str
+ "\" is a palindrome." << endl;
else
cout << "\"" << str

+ "\" is not a palindrome." << endl;

cin >> str;

return (0) ;

void swap (char &vl, char &v2) ({
char temp = vi;

vl = v2;
v2 = temp;
}
string reverse (const string é&s) {

int start = 0;
int end = s.length();
string temp (s);

while (start < end) {
——end;
swap (temp[start], temp[end]);

start++;
}

return temp;

22

// Uses <cctype> and <string>
string makeLower (const string &s) {
string temp (s);

for (int i = 0; i < s.length(); i++)
temp[i] = tolower(s[i]);

return temp;

string removePunct (const string é&s,
const string &punct) {
string noPunct; //Initialized to empty string
int sLength = s.length();
int punctLength = punct.length();

for (int i = 0; i < sLength; i++) {
// A one-character string
string aChar = s.substr(i, 1);

// Find location of successive
// characters of src in punct
int location = punct.find(aChar, 0);

23

// aChar is not in punct, so keep it
if (location < 0 ||
location >= punctLength)
noPunct = noPunct + aChar;

}

return noPunct;

// Uses functions makeLower, removePunct
bool isPal (const string &s) {

string punct(",;:.?2!''\" "); // includes a
blank

string str(s);
str = makelower (str);
string lowerStr = removePunct (str, punct);

return (lowerStr == reverse (lowerStr));

24

Converting string objects and C-
Strings

//Legal

char aCString[] = “This is my C-string.”;
string stringVariable;

stringVariable = aCString;

//ILLEGAL
aCString = stringVariable;
Strcpy (ACString, stringVariable);

//Legal
Strcpy (aCString, stringVariable.c_str());

//ILLEGAL
aCString = stringVAriable.c_str();

25

