
1

CSC 270 – Survey of

Programming Languages

C Lecture 5 – Bitwise Operations and

Operations Miscellany

Logical vs. Bitwise Operations

• Logical operations assume that the entire variable

represents either true or false.

– Combining two integer values using a logical

operator produces one result, with the variable

representing true or false.

• Bitwise operations assume that each bit in the

variable’s value represents a separate true or false.

– Combining two integer values using a bitwise

operators produces 8 (or 16 or 32 or 64) separate

bits each representing a true or a false.

2

Logical Values in C

• Although the 1999 standard for C includes

booleans, it does not exist in older versions.

• Integers are usually used for boolean values,

with nonzero values being accepted as true

and zero values being accepted as false.

• Boolean operations will produce a 1 for true

and a 0 for false.

&& - Logical AND

• The logical AND operator is && and produces a

1 if both operands are nonzero; otherwise, it

produces a 0.

111

001

010

000

x &&yyx

3

&&– An Example

#include <stdio.h>

int main(void)

{

unsigned u, v, w, x = 0x10,

y = 0x110, z = 0x0;

u = x && y;

v = x && z;

w = y && z;

printf("u = %x\tv = %x\tw = %x\n", u, v, z);

return(0);

}

Output

u = 1 v = 0 w = 0

|| - Logical OR

• The logical OR operator is || and produces a

1 if either operands is nonzero; otherwise, it

produces a 0.

4

Logical ||– An Example

#include <stdio.h>

int main(void)

{

unsigned u, v, w, x = 0x10,

y = 0x110, z = 0x0;

u = x || y;

v = x || z;

w = y || z;

printf("u = %x\tv = %x\tw = %x\n", u, v, z);

return(0);

}

Output
u = 1 v = 1 w = 1

Logical NOT

• The logical NOT operator ! Inverts the value;

nonzero becomes 0 and 0 becomes 1.

5

Logical NOT – An Example

#include <stdio.h>

int main(void)

{

unsigned x = 0x110, y;

y = !x;

printf("x = %x\ty = %x\n", x, y);

x = 0x0;

y = !x;

printf("x = %x\ty = %x\n", x, y);

return(0);

}

Output

x = 110 y = 0

x = 0 y = 1

Bitwise Operations

• Bitwise operations treat the operands as 8-bit

(or 16- or 32-bit) operands. Performing a bit-

wise AND operation on two 8-bit integers

means that 8 ANDs are performed on

corresponding bits.

• Example:
00111011

00001111

00001011

6

Bitwise AND

• A bitwise AND operation is actually 8 (or 16 or 32)

AND operations.

• An example of ANDing:
00111011

00001111

00001011

• The AND instruction can be used to clear selected

bits in an operand while preserving the remaining

bits. This is called masking.

cleared unchanged

Bitwise AND – An Example

unsigned u, v, w, x = 0xab87,

y = 0x4633, z = 0x1111;

u = x & y;

v = x & z;

w = y & z;

printf("u = %x\tv = %x\tw = %x\n", u, v, w);

Output

u = 203 v = 101 w = 11

7

Bitwise OR

• A bitwise OR operation is actually 8 (or 16 or

32) OR operations.

• An example of ORing:
00111011

00001111

00111111

• The OR instruction can be used to set selected

bits in an operand while preserving the

remaining bits.

unchanged
set

Bitwise OR – An Example

unsigned u, v, w, x = 0xab87,

y = 0x4633, z = 0x1111;

u = x | y;

v = x | z;

w = y | z;

printf("u = %x\tv = %x\tw = %x\n", u, v, w);

Output

u = efb7 v = bb97 w = 5733

8

Bitwise NOT(1s Complement)

• The bitwise NOT (better known as the 1s

complement) inverts each bit in the operand.

• Example
unsigned x, y = 0xab87;

x = ~y;

printf("x = %x\ty = %x\n", x, y);

Output

x = ffff5478 y = ab87

Bitwise XOR

• A bitwise XOR operation is actually 8 (or 16 or 32)

AND operations.

• An example of XORing:
00111011

00111111

00000100

• The XOR instruction can be used to reverse selected

bits in an operand while preserving the remaining

bits.

unchanged inverted

9

Bitwise XOR – An Example

unsigned u, v, w, x = 0xab87,

y = 0x4633, z = 0x1111;

u = x ^ y;

v = x ^ z;

w = y ^ z;

printf("u = %x\tv = %x\tw = %x\n", u, v, w);

Output

u = edb4 v = ba96 w = 5722

Bit Shifting

• >> Right shifting << Left Shifting

x = 0x00ff;

y = x << 8; /* y is 0x ff00 */

• Results may vary depending on the computer –

int can be different sizes on different

computers.

• x & ~077 will turn off lowest six bits.

10

getbits()

/*

* getbits() - Get n bits from position p

*/

unsigned getbits(unsigned x, int p, int n)

{

return ((x >> (p + 1 - n)) & ~(~0 << n));

}

Assignment Operators

• An assignment operator is just another

operator in C.

• We can rewrite

i = i + 2; as i += 2;

or

i = i + x * y; as i += x * y;

• Similarly, there are -=, *=, /=, etc.

11

Assignment Operators

• Caution!

i *= 2 + y;

is rewritten as

i = i * (2+y);

NOT

i = (i *2) + y;

• This is really useful with a statement like

yyval[yypv[p3+p4] + yypv[p1+p2]]

+= 2;

bitcount()

/*

* bitcount() - Count 1s in x

*/

int bitcount(unsigned x)

{

int b;

for (b = 0; x != 0; x >>= 1)

if (x & 01)

b++;

return(b);

}

12

Conditional Expressions

• Why write

if (a > b)

z = a;

else

a = b;

when you can write

z = (a > b)? a : b;

Conditional Expressions

• The general form is

expression1? expression2: expression3;

when expression1 is nonzero, expression2 is

evaluated. Otherwise expression3 is evaluated.

• The usual rules of conversion are in effect.

int i, j, a, b;

float x;

… …

i = (a > b)? j: x;

13

Conditional Expressions

• If this useful? YES!!

z = (a > b)? a : b; /* z = max (a, b); */

x = (x > 0)? x : -x; /* x = abs(x) */

/* Print 5 values to a line */

for (i = 0; i < MAXSIZE; i++)

printf("%d%c", x[i], i % 5 == 4? '\n':'\t');

Operator Precedence

Operator Associativity

() [] -> . left to right

! ~ ++ -- -unary (type)

* (ptr) & (address) sizeof

right to left

* / % left to right

+ - left to right

<< >> left to right

< <= > >= left to right

== != left to right

& (bitwise AND) left to right

^ (bitwise XOR) left to right

| (bitwise OR) left to right

