
Trends Of Commonly Used Programming Languages
in CS1 And CS2 Learning

1st Robert M. Siegfried
Department of Mathematics and Computer Science

Adelphi University
Garden City, NY, USA

siegfrie@adelphi.edu

2nd Katherine G. Herbert-Berger
Department of Computer Science

Montclair State University
Montclair, NJ, USA

herbertk@montclair.edu

3rd Kees Leune
Department of Mathematics and Computer Science

Adelphi University
Garden City, NY, USA

leune@adelphi.edu

4th Jason P. Siegfried
Department of Mathematics and Computer Science

Adelphi University
Garden City, NY, USA

jasonsiegfried@mail.adelphi.edu

Abstract—Computer science educators have tried to identify
the best language for their first-year college students to use
when learning how to program. Consequently, selecting a
computer programming language for use in an introductory
programming course has been a hot-button topic within com-
puting education communities. This paper builds on the work
started by Richard Reid in the early 1990s, which surveys
institutions providing post-secondary education. It provides
educators with up-to-date information about common choices
for computer programming languages used in first computer
programming courses. This year’s survey results indicate clearly
that, at the moment, Java and Python are the most commonly
used languages. A new element in the survey is that we have
now started collecting data regarding the second programming
course (CS2). Our findings show that 88% of all surveyed
schools only use one of four languages (Java, Python, C++,
and C), with the adoption of Python growing steadily at
the expense of the other languages. Java continues to be the
most popular choice for CS2 courses, followed by C++ after a
significant gap. However, we are finding potential trends where
institutions that start in Java or C++ tend to stay with their
choice, while schools starting with other languages are likely
to transition their students over to a second programming
language in CS2.

I. Introduction
During the last four decades, many languages have

been used for teaching introductory programming. The
language choice is usually made locally, based on factors
such as faculty preference, industry relevance, technical
aspects of the language, and the availability of useful
tools and materials. The process has become increasingly
cumbersome as the number of languages has grown [1].

CS1 remains a subject of great interest in the same way
it has been for over half a century. We usually consider it
to be one of the foundations of an education in computer
science. Since it is usually where students begin the study
of the discipline, CS1 courses are critically important.
While we concern ourselves with different approaches to
teaching beginners on how to develop an algorithm, and

turn it into a program that works correctly and is easy
to understand and modify, we cannot ignore the role that
our choice of programming languages plays.

Many programming languages have been used in CS1
courses; several of them became popular, yet were eventu-
ally replaced by other languages. FORTRAN was a choice
to be used as an introductory language, but the difficulties
that students had with industry-standard compilers led to
the development of WATFOR by Shantz et al. [2]. The
advent of structured programming led to the use of PL/I as
an instructional language; Holt considered the use of PL/I
a terrible way of teaching introductory programming [3].

Despite the development of the PL/C compiler by
Conway and Wilcox [4], PL/I died out because of the
difficulties students had in mastering it, and its compilers
were too complex to run on the early generations of
personal computers.

Niklaus Wirth derived the Pascal programming lan-
guage from Algol and it was intended for use in teaching
good programming habits. However, it had shortcomings
of its own. Kernighan described Pascal as “meant for
learning”, but unsuitable for serious programming [5],
an assessment with which Haberman concurred [6]. In
1996, Brilliant and Wiseman described Pascal as dated,
an assessment with which many educators agreed [7].

The question that computer science educators have
tried to answer since the early 1990s, is whether there
exists an ideal language to use when teaching college
freshmen how to program. Johnson considered C too
complex a language for beginning programmers [8]. Many
college programs switched to using C++ in their intro-
ductory programming course. The College Board decided
to embrace C++ for the Advanced Placement Computer
Science exams in 1994 [9]. The Advanced Placement exam
subsequently switched to Java in 2003 [10], and so did
many introductory programming courses. Java was widely



considered an easier language to learn than C++ [11], [12].
While the TeachRacket (originally called TeachScheme)
approach has been around for a decade [13], it is only used
in a relatively small number of colleges. More recently,
Python has become popular. Mason and Cooper found
that it has become widely used in programming courses
in Australia and New Zealand by programs that choose
not to focus on object-oriented programming in the first
course [14].

The choice of a programming language to be used in an
introductory programming course has been a “hot button”
topic within the computer science and information systems
communities. While the AP Computer Science curriculum
continues to be based on Java, there are many programs
that are questioning whether this is the language that they
ought to be using. Some schools never used Java in their
CS1 courses, while others have either made a change or
are contemplating it.

This paper builds on the work started by Richard Reid
in the early 1990s, which surveys institutions providing
post-secondary education and attempts to determine what
computer programming languages are in use for their first
computer programming course. This year’s survey results
indicate clearly that Java and Python are currently the
most common languages of choice for teaching CS1. A
new element in the survey is that we have now started
collecting data regarding the second programming course
(CS2).

Specifically, we asked the following questions: What is
the most common programming language of choice in
post-secondary CS1 courses? What is the most common
programming language of choice in post-secondary CS2
courses? And, finally: Is there a relationship between the
languages used for CS1 courses and CS2 courses taught
in post-secondary programs of study? If so, what is the
relationship?

In this paper, we begin to answer these questions.
Section II gives a brief overview of the history of the Reid
List and its methodologies. SectionIII further delves into
related literature. Section IV summarizes our research and
previous work in the area. Section V discusses our current
active research and findings, and provides answers to our
research questions. Section VI addresses our conclusions
and future work.

II. The Reid List
Richard Reid was a Professor of Computer Science

at Michigan State University and he began tracking the
languages used to teach introductory programming to CS
majors in the early 1990s. The Reid List was updated
when 10% or more of the included colleges changed the
programming language of instruction [15]. This resulted in
a new list being released approximately twice a year until
Reid retired in 1999. Frances Van Scoy, an Associate Pro-
fessor of Computer Science at West Virginia University,
updated the list from 2001 until 2006 [16]].

TABLE I
Regional distribution of Reid List Schools (2019)

Region Schools (n = 402)

New England 39
Mid Atlantic (incl. DC) 83
Southeast 94
Kentucky and West Virginia 8
Midwest 95
Southwest 40
Northwest 23
Alaska and Hawaii 2
Non-US 18

TABLE II
Breakdown by Highest Degree Offered in Computing

Highest Degree Awarded in Computing 2011 2019

Associate’s 9 9
Bachelor’s 128 117
Master’s 109 104
Doctoral 157 166

The last list compiled by Reid included 527 colleges
and universities, of which 352 were located in the United
States, and 25 were located in Canada. With Van Scoy
taking over the list, the number of colleges and universities
outside the US fell to 11, with only 3 from Canada. The
schools appearing on lists compiled in 2011, 2015, and
2019 were based on the 24th Reid List, which Van Scoy
released in 2004.

The current Reid List (compiled in 2019) includes 402
colleges and universities. The geographic distribution of
the Reid List schools over the past two decades is shown
in Table I, with 384 of the colleges representing the District
of Columbia and 49 states.

Wyoming is the only state without representation de-
spite several attempts to obtain data from schools in the
state.

While there is a reasonable geographic balance, the mid-
Atlantic and southwestern states are overrepresented by
the relatively large number of schools in New York, Cali-
fornia and Pennsylvania that are on the List. Additionally,
the New England states as a whole are significantly over-
represented in comparison to its college-age population,
partially due to the presence of several Ivy League colleges
and MIT.

Table II shows the breakdown by the highest degree
program offered in computing for the surveys in 2011 and
2019. There is an almost even distribution between under-
graduate, master’s- and doctorate-granting departments
in 2001; however, only nine of the programs were in com-
munity colleges, which are significantly underrepresented
in the sample. There was one vocational/technical school
on the list. It was removed because the school no longer
offered a computing program. Five other schools are also
no longer included for the same reason. Three colleges
have been removed after they closed.



III. Literature Review

The earliest peer-reviewed and published survey of
programming language choice was by Levy in 1996 [17],
who noted that there were 151 schools on the 11th Reid
List from 1994 and that of the remaining schools, C and
Ada were the most common language.

Levy also noted the lack of consensus on what language,
if any, was the best language for teaching beginners how
to program.

Several studies were conducted in Australia and New
Zealand in 2001 [18], 2003 [19], 2010 [20] , 2013 [14],
and 2016 [21]. They ranked the popularity of program-
ming languages used in introductory programming courses
weighted by student enrollment. The studies show that
in 2001, the most popular languages were Java, Visual
Basic, and C++; over the next fifteen years, this changed
significantly and in 2016 the most popular programming
languages were Python, Java, and C.

Similarly, in 2001, the most common criteria for choos-
ing a language for CS1 was its industry relevance and
marketability, which was twice as common as pedagogic
benefits (39 universities to 19). In 2016, pedagogic benefits
were slightly more common than industry relevance (81%
compared to 78%).

There have been three other surveys looking at the
popularity of programming languages at European univer-
sities. Murphy et al. surveyed universities in the United
Kingdom in 2016 [22] and found that the most commonly
used language was Java, followed by the C family of
languages (C, C++ and C#) with Python a distance third.

The most common reason for the choice was industry
relevance effectively tied with object-orientation and avail-
ability/cost, and only after these was pedagogic benefits
a consideration. Becker [23] found similar results, where
49% of courses used Java, 28% used Python and 18%
used JavaScript. Industry relevance, availability/cost and
pedagogic benefit were the most common reasons in that
order. Avouris [24] compiled data from 121 courses at 44
higher education institutions in Greece, and found that
73% of these courses used C and 9% used Python.

Davies et al. surveyed 371 computer science programs
in 2010 to determine the programming languages used
in CS0, CS1 and CS2 courses [25]. They found that 179
programs used Java in their CS1 course, 107 used C++,
48 used Python and 27 used C. In their CS2 courses, 207
used Java, 134 used C++, 18 used C and 12 used Python.
While 75% used the object-oriented paradigm in CS1, 92%
used objects in their CS2 courses. Nevins surveyed the
computer science programs in the California Community
college system and found that 82% used a single language,
with 48% using C++ and 31% using Java [26].

In a 2019 publication, Silva et. al [27] investigated the
use of programming languages in CS1 and CS2 education
by comparing academic publications mentioning specific
programming languages. Their findings were that 41.3%

of publications related to CS1 education discussed using
Java, and 39.1% discussed the use of Python. For CS2
education, they found that 34.8% of publications were
Java-centric.

IV. Methodology
Updates to the Reid List were compiled in 2011, 2015,

and 2019, with a few of the programs listed being updated
in July 2020. The colleges and universities included in
the 2011 survey for the twenty-sixth Reid List were taken
from the twenty-fourth Reid List, published online in 2004;
many of these did not appear on the twenty-fifth list from
2006, which only listed 153 schools.

The methodology used to collect the data used to
compile the list has not changed significantly, despite the
work having been performed by different authors.

The authors recognize that there are challenges in
using the existing Reid list as a basis for data collec-
tion. Specifically, the list is US-centric and it under-
represents community colleges. Furthermore, the scope of
the study specifically excludes programming courses that
are taught as part of an interdisciplinary curriculum. As
such, the results found in this study are self-contained.
However, given the historic availability of the Reid list
data, understanding the evolution of language adoption
can help researchers understand the meta-issues that
impact language adoption and facilitate consideration in a
longitudinal study. By studying a large number of schools
over a long period of time, we can then further identify
patterns that may be helpful for future trends.

Figure 1 illustrates the process followed to locate data
for each school. The methodology was designed to obtain
objective data points in a repeatable way while minimizing
the inconvenience to individual faculty members.

Using previous lists as a starting point, step 1 (Identify
Program) identified what program (if any) would be
evaluated for the current revision.

The school’s public web sites were reviewed to determine
whether the school offered both Bachelor of Arts (BA) and
Bachelor of Science (BS) programs. If so, the requirements
for the BS were used. If the highest degree offered was an
Associate’s degree, as is common at community colleges,
the requirements for the Associate’s degree in Computer
Science were examined. Schools offered both Computer
Science and Information systems programs, Computer Sci-
ence was preferred over Information Systems. Computer
Engineering, Information Technology, and Data Science
or similarly named programs were not included in this
review. If no match was found, the school was removed
from the list, and no data was collected.

The second stage in data collection was to review
degree requirements for the selected programs. As before,
websites containing programs of study were analyzed, and
the requirements for a degree program in Computing were
examined to determine the first required programming
course. If program requirements could be found with



Fig. 1. Reid List Data Collection Methodology

certainty and confidence, it was included in this year’s
revision. In all other cases, it was omitted from data
collection. Course descriptions were examined to see if
explicit references to the programming language of in-
struction were included. If so, the course description was
deemed authoritative, and the data was recorded.

However, as expected, most programs did not specify
the language used in their CS1 and/or CS2 courses. Our
next step was to determine if a current syllabus for the
course was available online. Only the syllabus for the cur-
rent academic year was accepted. Only if a current syllabus
was identified and contained specific references to the
programming languages used for the course, we included
the data point. If multiple current syllabi were located,
they were cross-referenced for consistency. In this, we
follow the same approach as Becker and Fitzpatrick [28].

If a current syllabus could not be obtained, or if no
language reference could be found in one, the web site
of the bookstore that is affiliated with the school’s web
site was checked for a textbook adoption; in some cases,
the bookstore was contacted in an attempt to get this
information.

As before, only textbook listings for the current term
were considered, and results were only accepted if the
choice of textbook(s) clearly identified a specific program-
ming language.

Lastly, if these steps did not yield results, then depart-
ment members were contacted to obtain this information.

TABLE III
The 28th Reid List of CS1 Languages (2019)

Language Number of schools (n = 409)

Java 163
Python 111
C++ 83
C 17
Racket/Scheme 6
JavaScript 2
Scala 2
C# 1
Haskell 1
Visual Basic 1
Logic 1
2 Languages 5
Choice of Language 16

Emails to faculty members became standard procedure
in the 2015 and 2019 updates because they frequently
provided insightful anecdotal information.

V. Results
The 28th Reid List (2019) appears in Table III. It

immediately illustrates that Java remains the predominant
language for CS1 courses taught at Reid List schools, with
Python and C++ in second and third place respectively.
C and Scheme/Racket (the Teach Racket group’s dialect
of Scheme) follow them distantly. JavaScript, Scala, C#,
Haskell, SNAP and Visual Basic are each used in only one
or two schools. Lastly, there was one program that did



TABLE IV
A comparison of programming language usage in CS1 courses in

the 3 most recent surveys

Language 2011 2015 2019

C 18 21 17
C++ 85 76 69
Java 193 179 159
Python 41 75 107
Racket/Scheme 11 9 5
Other Languages 16 11 11
2 or More Languages 12 8 4
Choice of 2 or more 8 8 15

not use a programming language but taught the concepts
of programming using pseudocode and the programming
constructs using basic logic.

Five schools used two languages in the same courses,
such as Python with C++ or Java. These schools are in
addition to schools covering C and C++ in the same in-
troductory course; these four schools are counted together
with the courses taught in C++, since it is reasonable to
assume that mastery of C++ was the main learning goal
for the course, with mastery of C being an additional
positive outcome.

Sixteen schools had different course sections or most
commonly, different introductory courses in different lan-
guages. In the latter case, these different CS1 courses had
different themes or were intended for different audiences.
It was not unusual for there to be as many as four different
courses serving as a first programming course for computer
science majors.

Table IV shows the changes in language popularity
between the 26th (2011), the 27th (2015), and the 28th
(2019) Reid Lists. The only schools included in this
analysis were those for which there was data for all
three lists. The most obvious changes are in the loss in
popularity of Java and the gain by Python. C++ also
became less popular as a CS1-language, although far less
so than Java. The increased popularity of Python seems
to be almost fully at the expense of Java and C++. The
other languages were each used at three or fewer colleges
and are not listed separately.

Schools employing more than one language for CS1
instruction have remained relatively rare, with the use
of multiple languages in more courses decreasing and the
number using different languages in different courses or
sections increasing.

The languages used by Reid List colleges in their CS2
courses appear in Table V. Java is the most popular by
a sizable margin with 196 schools using it to teach CS2
courses (55.5%).

C++ was used by 90 schools to teach CS2, followed
by Python and C, which are used in 22 and 15 schools
respectively. C#, Scala, Alice, and Haskell accounted for
the languages which collectively were used in nine Reid
List schools. Eleven schools used multiple languages in

TABLE V
The Popularity of Programming Language in CS2

Language Number of schools (n = 353)

Java 196
C++ 90
Python 22
C 15
C# 4
Scala 3
Alice 1
Haskell 1
2 or more Languages 11
Choice of 2 or more Language 10

TABLE VI
Combinations of languages used in the CS1–CS2 sequence

(n = 312)

CS1 CS2 Amount

C C++ 7
C 4
Java 5

C++ C++ 51
Java 5

Java Java 122
C++ 11
C 4
C# 2
Python 1

Python Java 54
Python 18
C++ 13
C 1
C# 1
Haskell 1

their CS2 courses and another ten offered multiple courses
or sections using different languages.

The languages used by the various colleges in the CS1-
CS2 sequence is shown in Table VI. The most commonly
observed sequence consists of schools starting with Java
for CS1 and continuing its use in CS2.

Schools starting with Python for CS1 and who switch
to Java to teach CS2 follow in second place. Schools that
opt to adopt C++ for CS1 instruction commonly continue
to use it for CS2. These three combinations account for
73% of schools included in our data set.

Similarly, most of the schools using Python in their
CS1 course used Java or C++ for CS2, with nearly all
remaining schools continuing with Python into CS2. The
schools using C in CS1 split almost evenly between C++
and Java, with the remainder continuing in C.

VI. Conclusions
In this paper, we continued the work initiated by

Richard Reid in the early 1990s. Reid’s lists, later con-
tinued by Van Scoy and then by Siegfried et. al. provides
a longitudinal overview of the programming language of
choice for CS1 classes taught at post-secondary institu-
tions. This edition shows clearly that the adoption of



Python continues and predominantly takes place at the
expense of Java and C++.

Based on our survey, we can now answer our first ques-
tion: What is the most common programming language
of choice in post-secondary CS1 courses? The answer is
that 88% of the Reid List schools use one of only four
languages: Java, Python, C++, C in their CS1 courses.

In this edition of the survey, we extended our data
collection efforts by also capturing the language-of-choice
for the second programming language course. In this
case, the field is much narrower than in CS1: Java is
the predominant language for CS2 courses. This finding
provides an answer to our second question: What is the
most common programming language of choice in post-
secondary CS2 courses? Java’s dominance is indisputable
in CS2 courses. C++ takes second place, having been
adopted by approximately 22% of programs.

Our third question was: Is there a relationship between
the languages used for CS1 courses and CS2 courses taught
in post-secondary programs of study? If so, what is the
relationship?

We found that 195 schools (54%) chose the same
programming language for CS1 and CS2. However, that
also means that 46% of the colleges prefer a different
language for the two courses. Of this group, the most
common switch is from Python in CS1 to Java in CS2.
Almost all schools indicated that they introduce additional
languages later in their curricula.

Future work for this research includes further exploring
this data set to better understand the observed trends
and differences. Additionally, we plan to look at including
further, publicly available data to help understand the
student’s experience in programming languages in their
first two years of computing study.

ACKNOWLEDGEMENTS
This work has been through an IRB process and was

found exempt. A data repository has been created with
first person interviews either conducted via phone or email
of representatives from the participating universities for
reproducibility purposes.

References
[1] A. Pears, S. Seidman, L. M. L. Mannila, E. Adams,

J. Bennedsen, M. Devlin, and J. Paterson, “A Survey of
Literature on the Teaching of Introductory Programming,”
in Working Group Reports on ITiCSE on Innovation and
Technology in Computer Science Education, ser. ITiCSE-WGR
’07. New York, NY, USA: ACM, 2007, p. 204–223. [Online].
Available: https://doi.org/10.1145/1345443.1345441

[2] P. W. Shantz, R. A. German, J. G. Mitchell, R. S. K. Shirley, and
C. R. Zernike, “WATFOR – The University of Waterloo FOR-
TRAN IV Compiler,” Communications of the ACM, vol. 10,
no. 1, January 1967.

[3] R. C. Holt, “Teaching the Fatal Disease or Introductory Com-
puter Programming Using PL/I,” ACM SIGPLAN Notices,
vol. 8, no. 5, pp. 8–23, May 1973.

[4] R. W. Conway and T. R. Wilcox, “Design and Implementation
of a Diagnostic Compiler for PL/I,” Communications of the
ACM, vol. 16, no. 3, pp. 169–179, March 1973.

[5] B. W. Kernighan, “Why Pascal Is Not My Favorite Program-
ming Language,” AT&T Bell Laboratories, Computing Science
Technical Report 100, April 1981.

[6] A. N. Haberman, “Critical Comments on the Programming
Language Pascal,” Acta Informatica, vol. 3, pp. 47–57, 1973.

[7] S. S. Brilliant and T. Wiseman, “The first programming
paradigm and language dilemma,” ACM SIGCSE Bulletin,
vol. 28, no. 1, pp. 338–342, 1996.

[8] L. F. Johnson, “C In The First Course Considered Harmful,”
Communications of the ACM, vol. 38, no. 5, pp. 99–101, May
1995.

[9] R. Cartwight, R. Kick, C. Horstmann, F. Trees, G. Chapman,
D. Gries, H. Walkers, U. Wolz, and O. Astrachan, “Recommen-
dations for changes in advanced placement computer science
(panel session),” in Proceedings of the thirty-first SIGCSE
technical symposium on Computer science education (SIGCSE
’00). ACM, 2000, p. 416.

[10] C. L. Fletcher and J. B. Owen, “WeTeach_CS Support for AP
Computer Science; “A”, Test and CS Principles,” in Proceedings
of the 2018 Texas Computer Education Association (TCEA
2018), February 2018.

[11] S. Hadjerroult, “Java As First Programming Language: A
Critical Evaluation,” ACM SIGCSE Bulletin, vol. 30, no. 2,
pp. 43–47, June 1998.

[12] M. Madden and D. Chambers, “Evaluation of Student Attitudes
to Learning the Java Language,” in Proceedings of the Confer-
ence on the Principles and Practice of Programming in Java,
June 2002, pp. 125–130.

[13] M. Felleisen, R. B. Findler, M. Flatt, and S. Krishnamurthi,
“The TeachScheme! Project: Computing and Programming for
Every Student.” Computer Science Education, vol. 14, no. 1,
pp. 55–57, 2004.

[14] R. Mason and G. Cooper, “Introductory Programming Courses
in Australia and New Zealand in 2013 - trends and reasons,”
in Proceedings of the Sixteenth Australasian Computing Edu-
cation Conference (ACE2014), 2014, pp. 139–147.

[15] R. J. Reid, “First Course Language for Computer Science
Majors,” West Virginia University, Tech. Rep., 2011. [Online].
Available: http://www.csee.wvu.edu/~vanscoy/REID06.html

[16] F. V. Scoy, “Reid List 25,” West Virginia University, Tech.
Rep., 2011. [Online]. Available: {http://groups.google.com/
group/comp.edu/browse_thread/thread/4f00b5f437ce261a/
3267514419052033?q=Reid+List#3267514419052033}

[17] S. P. Levy, “Computer Language Usage in CS1: Survey
Results,” 3C ON-LINE, vol. 3, no. 1, pp. 13–17, Jan. 1996.
[Online]. Available: https://doi.org/10.1145/218806.218812

[18] M. de Raadt, R. Watson, and M. Toleman, “Language trends
in introductory programming courses,” in Informing Science +
Information Technology Education Joint Conference (InSITE
2002), June 2002.

[19] ——, “Introductory programming: what’s happening today and
will there be any students to teach tomorrow?” in Proceedings
of the 6th Australasian Computing Education Conference (ACE
2004), February 2004, pp. 18–24.

[20] R. Mason, G. Cooper, and M. de Raadt, “Trends in Introductory
Programming Courses in Australian Universities – Languages,
Environments and Pedagogy,” in Proceedings of the Fourteenth
Australasian Computing Education Conference (ACE2012),
January 2012, pp. 33–42.

[21] R. Mason and Simon, “Introductory programming courses
in australasia in 2016,” in Proceedings of the Nineteenth
Australasian Computing Education Conference. ACM, 2017,
p. 81–89. [Online]. Available: https://doi.org/10.1145/3013499.
3013512

[22] E. Murphy, T. Crick, and J. H. Davenport, “An Analysis of
Introductory Programming Courses at UK Universities,” The
Art, Science, and Engineering of Programming, vol. 1, no. 2,
2017.

[23] B. A. Becker, “A Survey of Introductory Programming Courses
in Ireland,” in Proceedings of the 2019 ACM Conference on
Innovation and Technology in Computer Science Education
(ITiCSE ’19), July 2019, pp. 58–64.

[24] N. Avouris, “Introduction to computing: a survey of courses in
Greek higher education institutions,” in Proceedings of the 22nd



Pan-Hellenic Conference on Informatics (PCI ’18. ACM, 2018,
pp. 64–69.

[25] S. Davies, J. A. Polack-Wahl, and K. Anewalt, “A snapshot of
current practices in teaching the introductory programming se-
quence,” in Proceedings of the 42nd ACM technical symposium
on Computer science education (SIGCSE ’11), March 2011, pp.
625–630.

[26] D. Nevins, “CS 1 language adoption at California Community
Colleges: 2012,” ACM Inroads, vol. 4, no. 1, pp. 34–37, March
2013.

[27] D. B. Silva, R. d. L. Aguiar, D. S. Dvconlo, and C. N.
Silla, “Recent studies about teaching algorithms (cs1) and data
structures (cs2) for computer science students,” in 2019 IEEE
Frontiers in Education Conference (FIE), 2019, pp. 1–8.

[28] B. A. Becker and T. Fitzpatrick, “What do cs1 syllabi
reveal about our expectations of introductory programming
students?” in Proceedings of the 50th ACM Technical
Symposium on Computer Science Education, ser. SIGCSE ’19.
New York, NY, USA: ACM, 2019, p. 1011–1017. [Online].
Available: https://doi.org/10.1145/3287324.3287485


