True or False: Please circle either true or false. No work is necessary.

1. (5 points) If \(\{a_n\} \) is a decreasing sequence and \(a_n > 0 \) for all \(n \), then \(\{a_n\} \) is convergent.
 A. True B. False

2. (5 points) If \(f(x) = 2(x - 1) - (x - 1)^2 + \frac{1}{3}(x - 1)^3 - \cdots \) is convergent for all values of \(x \), then \(f'''(1) = 3 \).
 A. True B. False

3. (5 points) \(\sum_{n=0}^{\infty} \frac{(-1)^n}{n!} = \frac{1}{e} \).
 A. True B. False

4. (5 points) If the series \(\sum c_n x^n \) diverges when \(x = 6 \), then the series diverges when \(x = -10 \).
 A. True B. False

Multiple Choice: Please circle your answer. No work is necessary, but partial credit will be given if work is shown.

5. (5 points) If the limit of the sequence \(a_n \) defined by \(a_{n+1} = -\frac{4}{4 + a_n} \) exists, then the limit is
 A. 1
 B. -1
 C. 2
 D. -2
 E. \(\pi \)
6. (5 points) Which of the following series are divergent? (There might be more than one.)

A. \[\sum_{n=1}^{\infty} \frac{n^2 + 4n - 1}{\sqrt{n^5 + \pi n + 9}} \]
B. \[\sum_{n=1}^{\infty} \frac{n + 1}{n^4} \]
C. \[\sum_{n=1}^{\infty} \frac{1}{\pi^n} \]
D. \[\sum_{n=1}^{\infty} \frac{e^n + 1}{e^{2n}} \]
E. \[\sum_{n=1}^{\infty} \frac{1}{n(n - 1)} \]

7. (5 points) The radius of convergence of the series \(\sum_{n=1}^{\infty} \frac{x^n}{n^2 5^n} \) is

A. 0
B. 5
C. \(\infty \)
D. \(\frac{1}{5} \)

8. (5 points) The Taylor series of \(\sin(x^2) \) centered at \(a = 0 \) is

A. \[\sum_{n=0}^{\infty} (-1)^n \frac{x^{4n+1}}{(2n + 1)!} \]
B. \[\sum_{n=0}^{\infty} \frac{x^{2n}}{n!} \]
C. \[\sum_{n=0}^{\infty} (-1)^n \frac{x^{4n}}{(2n)!} \]
D. \[\sum_{n=0}^{\infty} (-1)^n \frac{x^{4n+2}}{(2n + 1)!} \]
9. (5 points) Let $T_3(x)$ be the degree 3 taylor polynomial of $\sin(x)$ at $a = 0$. Using Taylor’s inequality, the bound for $|R_3(x)| = |\sin(x) - T_3(x)|$ for $x \in [0, 0.1]$ is

A. $\frac{1}{3!}(0.1)^3$
B. $\frac{x^4}{3!}$
C. $\frac{1}{4!}(x)^4$
D. $\frac{1}{4!}(0.1)^4$

10. (5 points) $\sum_{n=1}^{\infty} 2^{2n} 5^{1-n}$ is

A. convergent and equal to 5
B. convergent and equal to 5/4
C. convergent and equal to 20
D. divergent and equal to ∞
E. none of the above

11. (5 points) Which of the following statements are correct?

I. Every convergent series is absolutely convergent.
II. If a series is absolutely convergent, then it is convergent.
III. The series $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^2}$ is absolutely convergent.

A. I,II and III
B. I and III
C. II and III
D. only III
E. I and II
Short Answer: Show your work for full credit.

12. (5 points) Use series to evaluate the limit \(\lim_{x \to 0} \frac{\sin(x) - x}{x^3} \).

13. (a) (5 points) Explain why the series \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1} n^5}{n^5} \) is convergent.

(b) (5 points) Find the sum of the series \(\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^5} \) to two decimal places.
14. (15 points) Find the interval of convergence of the series \(\sum_{n=1}^{\infty} \frac{(x+2)^n}{n4^n} \).
15. (a) (10 points) Find the power series representation of \(\frac{1}{(1-x)^2} \) (HINT: \(\frac{d}{dx} \left(\frac{1}{1-x} \right) = \frac{-1}{(1-x)^2} \)).

(b) (5 points) What is the radius of convergence of the series in part (a)?