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Can we be more creative with our paths?

•

••

•

••

Can we take prime cycles as before but throw away any prime cycle that
uses two red edges in a row? When we form the product, what happens?
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Hypergraphs

Definition

A hypergraph H is a set of vertices V (H) and a set of hyperedges E (H)
such that each hyperedge is the nonempty union of elements of V (H) and
the union of all the hyperedges is V (H). We call the cardinality of a
hyperedge e the order of the hyperedge and denote it |e|.

•v1

•v2

•v3

•v4

e1
e2

e3

e4
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Path definitions

The main issue in generalizing the Ihara-Selberg zeta function to a
hypergraph zeta function is deciding on our path definitions. We keep the
same idea of wandering from vertex to vertex via edges, but now we have
some options for what backtracking should mean.
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Path definitions

The main issue in generalizing the Ihara-Selberg zeta function to a
hypergraph zeta function is deciding on our path definitions. We keep the
same idea of wandering from vertex to vertex via edges, but now we have
some options for what backtracking should mean.

Definition

We say a path has hyperedge backtracking if we use a hyperedge twice in
a row.

•

•
•

e
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Generalized Ihara-Selberg zeta function

We keep the same ideas for tail-less, prime, and an equivalence relation.
For a hypergraph H, we define the generalized Ihara-Selberg zeta function
for u ∈ C by

ζH(u) =
∏

[c]

(

1 − u|c|
)−1

.
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We keep the same ideas for tail-less, prime, and an equivalence relation.
For a hypergraph H, we define the generalized Ihara-Selberg zeta function
for u ∈ C by

ζH(u) =
∏

[c]

(

1 − u|c|
)−1

.

If every hyperedge has order 2, our backtracking definition is the
same as graph backtracking, in which case, we have the Ihara-Selberg
zeta function.
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Generalized Ihara-Selberg zeta function

We keep the same ideas for tail-less, prime, and an equivalence relation.
For a hypergraph H, we define the generalized Ihara-Selberg zeta function
for u ∈ C by

ζH(u) =
∏

[c]

(

1 − u|c|
)−1

.

If every hyperedge has order 2, our backtracking definition is the
same as graph backtracking, in which case, we have the Ihara-Selberg
zeta function.

This is still typically an infinite product.
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Expressing the generalized zeta function as a determinant

To realize ζH(u) as a determinant expression, we generalize a construction
of Kotani and Sunada:

•v1

•v2

•v3

•v4
•v5
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Expressing the generalized zeta function as a determinant

To realize ζH(u) as a determinant expression, we generalize a construction
of Kotani and Sunada:

We color the hyperedges distinct colors.
Now we replace each hyperedge by a clique on its vertices, keeping
the same color.
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Expressing the generalized zeta function as a determinant

To realize ζH(u) as a determinant expression, we generalize a construction
of Kotani and Sunada:

We color the hyperedges distinct colors.
Now we replace each hyperedge by a clique on its vertices, keeping
the same color.
We split each edge into two directed edges which point in opposite
directions.

•v1

•v2

•v3

•v4

•v5
•v1

•v2

•v3

•v4

•v5
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Oriented line graph

Finally, we construct an “oriented line graph” by

•

• •

•
•
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Oriented line graph

Finally, we construct an “oriented line graph” by
◮ VL = oriented edges from before.

•

• •

•
•

• • • • • •
•
•
•
•
•
•

•

•
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Oriented line graph

Finally, we construct an “oriented line graph” by
◮ VL = oriented edges from before.
◮ {ei , ej} ∈ EL if ei feeds into ej and they have different colors.

•

• •

•
•

d1

b4

b6

• • • • • •
•
•
•
•b4

•
•b6

•

•

•
d1 •
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Perron-Frobenius operator

Definition

For a directed graph, the Perron–Frobenius operator T is a matrix given by
setting the i , j-entry to 1 if there is an oriented edge with vi as the start
and vj as the terminus, and setting it to be zero otherwise. This is an
oriented version of the adjacency operator of a graph.
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Perron-Frobenius operator

Definition

For a directed graph, the Perron–Frobenius operator T is a matrix given by
setting the i , j-entry to 1 if there is an oriented edge with vi as the start
and vj as the terminus, and setting it to be zero otherwise. This is an
oriented version of the adjacency operator of a graph.

Then,
ζH(u) = det (I − uT )−1

.
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Associated bipartite graph

A hypervertex v is incident to a hyperedge e if v ∈ e. We can use this to
define a bipartite graph associated to H.

•v1

•v2

•v3

•v4

e1 e2

e3

e4
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Associated bipartite graph

A hypervertex v is incident to a hyperedge e if v ∈ e. We can use this to
define a bipartite graph associated to H.

The vertex sets are given by V (H) and E (H).
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Associated bipartite graph

A hypervertex v is incident to a hyperedge e if v ∈ e. We can use this to
define a bipartite graph associated to H.

The vertex sets are given by V (H) and E (H).

(v , e) is an edge if v is incident to e.

•v1

•v2

•v3

•v4

e1 e2

e3

e4

•v1 •v2 •v3 •v4

•
e1

•
e2

•
e3

•
e4

incidence

relation
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Bipartite graph and the hypergraph zeta function

The associated bipartite graph is our second structure which we can study
to realize the hypergraph zeta function.
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Bipartite graph and the hypergraph zeta function

The associated bipartite graph is our second structure which we can study
to realize the hypergraph zeta function.

Let’s look at what happens to a prime cycle in H when we change to
the associated bipartite graph B .

•v1

•v2

•v3

•v4

e1 e2

e3

e4

•v1 •v2 •v3 •v4

•e1
•e2

•e3
•e4

incidence

relation

A cycle of length 3 has become a cycle of length 6 in the bipartite graph!
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Hashimoto’s determinant expressions

Remark

There is a 1-to-1 correspondence between prime cycles of length ℓ in H

and prime cycles of length 2ℓ in B.

This gives us a different expression for the generalized zeta function:

ζH(u) = ZB(
√

u).
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Properties of ζ

These expressions lead us to some interesting properies of the generalized
zeta function:

ζH(u) is a rational function.

There exists hypergraphs with ζH(u) such that no graph has
Z (u) = ζH(u).

There are lots of functional equations.

There is a meaningful Riemann hypothesis for regular hypergraphs.
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Distinguishing cospectral graphs
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• •

•
• •
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•
•

• •

•
•

• •

•
•
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•
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Structural interplay: isospectral digraph construction

Given a hypergraph, we have relied upon two key structures so far:
the oriented line graph Lo

H and the associated bipartite graph BH.
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the oriented line graph Lo

H and the associated bipartite graph BH.

Given a bipartite graph, there are two ways to form a hypergraph,
depending upon which set you choose to represent hypervertices and
which you choose to represent hyperedges. The other hypergraph
which comes from BH is the dual hypergraph of H denoted H

∗.

Chris Storm (Adelphi University) H. zetas and isospectral digraphs January 6, 2008 14 / 18



Structural interplay: isospectral digraph construction

Given a hypergraph, we have relied upon two key structures so far:
the oriented line graph Lo

H and the associated bipartite graph BH.

Given a bipartite graph, there are two ways to form a hypergraph,
depending upon which set you choose to represent hypervertices and
which you choose to represent hyperedges. The other hypergraph
which comes from BH is the dual hypergraph of H denoted H

∗.

We will be interested in studying the oriented line graphs which arise
from H and H

∗. With appropriate conditions on our initial
hypergraph H, we will see that Lo

H and Lo
H

∗ have the same T
spectra and are not isomorphic.
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Structural interplay: fitting the structures together

B

H H
∗

Lo
H Lo

H
∗
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Structural interplay: fitting the structures together

B

H H
∗

Lo
H Lo

H
∗

det(I − uT1)
−1 ZB(

√
u) det(I − uT2)

−1
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Structural interplay: fitting the structures together

B

H H
∗

Lo
H Lo

H
∗

det(I − uT1)
−1 ZB(

√
u) det(I − uT2)

−1= =
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Conditions for isospectrality

Theorem (B, S)

Let H be a connected hypergraph which is not just a cycle and for which
every hypervertex is in at least 2 hyperedges. Then the non-zero part of
the spectra of T (Lo

H) and T (Lo
H

∗) are identical. In particular, if

∑

e∈E(H)

[|e|(|e| − 1)] =
∑

v∈V (H)

[i(v)(i(v) − 1)] ,

then Lo
H and Lo

H
∗ are isospectral (with respect to T).
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Cospectral digraphs

•1

•2

•3

•4

•a

•b

•c

•d

•1 •2

•4•3

H

•d •a

•b•c

H
∗
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Cospectral digraphs
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Conditions for non-isomorphism

Theorem (B,S)

Suppose H is a hypergraph where every vertex is in at least 3 hyperedges.
If Lo

H ∼= Lo
H

∗, then H ∼= H
∗.
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Conditions for non-isomorphism

Theorem (B,S)

Suppose H is a hypergraph where every vertex is in at least 3 hyperedges.
If Lo

H ∼= Lo
H

∗, then H ∼= H
∗.

We’re pretty sure we can remove the condition on each vertex being
in at least 3 hyperedges.
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Conditions for non-isomorphism

Theorem (B,S)

Suppose H is a hypergraph where every vertex is in at least 3 hyperedges.
If Lo

H ∼= Lo
H

∗, then H ∼= H
∗.

We’re pretty sure we can remove the condition on each vertex being
in at least 3 hyperedges.

This theorem combined with the previous theorem give us an easy
recipe for constructing isospectral digraphs which are not isomorphic.
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