The Ihara-Selberg Zeta Function

Chris Storm

Dartmouth College

September 18, 2006
Outline

1 History

2 Graphs

3 The Zeta Function
 • The Riemann Zeta Function
 • Prime Cycles

4 Properties of the zeta function
 • Rationality
 • Bass’ Factorization

5 The zeta function as graph invariant
1966 and 1968: Ihara writes two papers that lay out the theory of zeta functions on discrete subgroups of two by two projective linear groups over p-adic fields. Gives an explicit factorization for regular graphs.
History of the zeta function

- 1966 and 1968: Ihara writes two papers that lay out the theory of zeta functions on discrete subgroups of two by two projective linear groups over p-adic fields. Gives an explicit factorization for regular graphs.
- Serre points out the graph connection.
History of the zeta function

- 1966 and 1968: Ihara writes two papers that lay out the theory of zeta functions on discrete subgroups of two by two projective linear groups over p-adic fields. Gives an explicit factorization for regular graphs.
- Serre points out the graph connection.
- 1989: Hashimoto gives explicit factorizations for biregular bipartite graphs.
History of the zeta function

- 1966 and 1968: Ihara writes two papers that lay out the theory of zeta functions on discrete subgroups of two by two projective linear groups over p-adic fields. Gives an explicit factorization for regular graphs.
- Serre points out the graph connection.
- 1989: Hashimoto gives explicit factorizations for biregular bipartite graphs.
- 1992: Bass generalizes Hashimoto’s factorization to all finite graphs.
1966 and 1968: Ihara writes two papers that lay out the theory of zeta functions on discrete subgroups of two by two projective linear groups over p-adic fields. Gives an explicit factorization for regular graphs.

Serre points out the graph connection.

1989: Hashimoto gives explicit factorizations for biregular bipartite graphs.

1992: Bass generalizes Hashimoto’s factorization to all finite graphs.

History of the zeta function

- 1966 and 1968: Ihara writes two papers that lay out the theory of zeta functions on discrete subgroups of two by two projective linear groups over p-adic fields. Gives an explicit factorization for regular graphs.
- Serre points out the graph connection.
- 1989: Hashimoto gives explicit factorizations for biregular bipartite graphs.
- 1992: Bass generalizes Hashimoto’s factorization to all finite graphs.
- Now: a lot of people going in a lot of different directions.
Definition

A graph $X = (V, E)$ is

- a set V of vertices
- and a set E of unordered pairs of vertices, called edges.
A graph $X = (V, E)$ is

- a set V of vertices
- and a set E of unordered pairs of vertices, called edges.
The Adjacency Matrix of a Graph

Definition

Two vertices u and v are adjacent, written $u \sim v$, if $\{u, v\}$ is an edge.

We can use the adjacency relation to associate a matrix A with a graph as follows: the rows and columns of A are parametrized by the vertices. The (v_i, v_j) entry of A is 1 if v_i is adjacent to v_j and 0 otherwise.
The Adjacency Matrix of a Graph

Definition

Two vertices u and v are adjacent, written $u \sim v$, if $\{u, v\}$ is an edge.

We can use the adjacency relation to associate a matrix A with a graph as follows: the rows and columns of A are parametrized by the vertices. The (v_i, v_j) entry of A is 1 if v_i is adjacent to v_j and 0 otherwise.

\[A = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \]
The Adjacency Matrix of a Graph

Definition

Two vertices u and v are adjacent, written $u \sim v$, if $\{u, v\}$ is an edge.

We can use the adjacency relation to associate a matrix A with a graph as follows: the rows and columns of A are parametrized by the vertices. The (v_i, v_j) entry of A is 1 if v_i is adjacent to v_j and 0 otherwise.

$$A = \begin{pmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{pmatrix}$$

Question: What does the (v_i, v_j) entry of A^k represent when k is a positive integer?
The Spectrum

- The adjacency relation is a symmetric relation; ie, if u is adjacent to v, then v is adjacent to u. Hence, the adjacency matrix of a graph is a symmetric matrix.
The adjacency relation is a symmetric relation; ie, if u is adjacent to v, then v is adjacent to u. Hence, the adjacency matrix of a graph is a symmetric matrix.

This means that the eigenvalues of A are real.
The adjacency relation is a symmetric relation; ie, if u is adjacent to v, then v is adjacent to u. Hence, the adjacency matrix of a graph is a symmetric matrix.

This means that the eigenvalues of A are real.

We call the set of eigenvalues the spectrum of X and will often order them by

$$\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_{|V|}.$$
The Spectrum

- The adjacency relation is a symmetric relation; ie, if u is adjacent to v, then v is adjacent to u. Hence, the adjacency matrix of a graph is a symmetric matrix.

- This means that the eigenvalues of A are real.

- We call the set of eigenvalues the spectrum of X and will often order them by $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_{|V|}$.

The spectrum of this graph is $\{\frac{1}{2} \left(1 + \sqrt{17}\right), 0, -1, \frac{1}{2} \left(1 - \sqrt{17}\right)\}$.
Some Properties associated with the eigenvalues

Remarkably, the spectrum of a graph contains quite a bit of useful information regarding the graph. In general, it’s associated with more intangible properties like “expansion”, but there are some concrete properties encoded in them as well. We list a few very basic properties:
Some Properties associated with the eigenvalues

Remarkably, the spectrum of a graph contains quite a bit of useful information regarding the graph. In general, it’s associated with more intangible properties like “expansion”, but there are some concrete properties encoded in them as well. We list a few very basic properties:

- If the graph has no loops, the eigenvalues sum to zero.
Remarkably, the spectrum of a graph contains quite a bit of useful information regarding the graph. In general, it’s associated with more intangible properties like “expansion”, but there are some concrete properties encoded in them as well. We list a few very basic properties:

- If the graph has no loops, the eigenvalues sum to zero.
- The degree of a vertex u, denoted $d(x)$, is the number of vertices to which it is adjacent. If Δ is the maximum degree of all of the vertices in X, then
 \[\Delta \geq \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_{|V|} \geq -\Delta. \]
Some Properties associated with the eigenvalues

Remarkably, the spectrum of a graph contains quite a bit of useful information regarding the graph. In general, it’s associated with more intangible properties like “expansion”, but there are some concrete properties encoded in them as well. We list a few very basic properties:

- If the graph has no loops, the eigenvalues sum to zero.
- The degree of a vertex u, denoted $d(u)$, is the number of vertices to which it is adjacent. If Δ is the maximum degree of all of the vertices in X, then

$$\Delta \geq \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_{|V|} \geq -\Delta.$$

- In particular, if X is k-regular, $\lambda_1 = k$.

Some Properties associated with the eigenvalues

Remarkably, the spectrum of a graph contains quite a bit of useful information regarding the graph. In general, it’s associated with more intangible properties like “expansion”, but there are some concrete properties encoded in them as well. We list a few very basic properties:

- If the graph has no loops, the eigenvalues sum to zero.
- The degree of a vertex u, denoted $d(x)$, is the number of vertices to which it is adjacent. If Δ is the maximum degree of all of the vertices in X, then
 \[\Delta \geq \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_{|V|} \geq -\Delta. \]
- In particular, if X is k-regular, $\lambda_1 = k$.
- X is bipartite if and only if $\lambda_1 = -\lambda_{|V|}$.
The Second Eigenvalue

Assume X is a k-regular graph; then, $\lambda_1 = k$. The key question is: how large, in absolute value, are the other eigenvalues?

Let’s first see why this question is important before we give an answer. To do this, we need to know what the (v_i, v_j)-entry of powers of the adjacency matrix represents. Let’s look at an example:
The Second Eigenvalue

Assume X is a k-regular graph; then, $\lambda_1 = k$. The key question is: how large, in absolute value, are the other eigenvalues?

Let’s first see why this question is important before we give an answer. To do this, we need to know what the (v_i, v_j)-entry of powers of the adjacency matrix represents. Let’s look at an example:

$$ k = 1 $$

The $(1, 2)$-entry of A^1 is: 0
The Second Eigenvalue

Assume X is a k-regular graph; then, $\lambda_1 = k$. The key question is: how large, in absolute value, are the other eigenvalues?

Let’s first see why this question is important before we give an answer. To do this, we need to know what the (v_i, v_j)-entry of powers of the adjacency matrix represents. Let’s look at an example:

$k = 2$

The $(1, 2)$-entry of A^2 is: 0
The Second Eigenvalue

Assume X is a k-regular graph; then, $\lambda_1 = k$. The key question is: how large, in absolute value, are the other eigenvalues?

Let’s first see why this question is important before we give an answer. To do this, we need to know what the (v_i, v_j)-entry of powers of the adjacency matrix represents. Let’s look at an example:

The $(1, 2)$-entry of A^3 is: 1

\[k = 3 \]

\[1 \quad 1 \quad 1 \quad 1 \quad 1 \]

\[1 \quad 1 \quad 1 \quad 1 \]

\[3 \quad 3 \quad 3 \quad 3 \]

\[v_1 \quad v_2 \]
The Second Eigenvalue

Assume X is a k-regular graph; then, $\lambda_1 = k$. The key question is: how large, in absolute value, are the other eigenvalues?

Let’s first see why this question is important before we give an answer. To do this, we need to know what the (v_i, v_j)-entry of powers of the adjacency matrix represents. Let’s look at an example:

The $(1, 2)$-entry of A^4 is: 2
The Second Eigenvalue

The \((v_i, v_j)\) entry of \(A^k\) is the number of ways to go from \(v_i\) to \(v_j\) in \(k\) steps.

Thus, random walks, mixing problems, and data expansion can all be modeled by successive multiplication of the adjacency matrix by itself.
The Second Eigenvalue

The \((v_i, v_j)\) entry of \(A^k\) is the number of ways to go from \(v_i\) to \(v_j\) in \(k\) steps.

Thus, random walks, mixing problems, and data expansion can all be modeled by successive multiplication of the adjacency matrix by itself.

As you raise \(A\) to higher and higher powers, you will be forced into the eigenspace corresponding to the largest eigenvalue in absolute value. The speed at which you reach that eigenspace is determined by how large the next eigenvalue is. If you want good mixing, expansion, etc., you are interested in having all of the other eigenvalues as small as possible.
The Second Eigenvalue

The \((v_i, v_j)\) entry of \(A^k\) is the number of ways to go from \(v_i\) to \(v_j\) in \(k\) steps.

Thus, random walks, mixing problems, and data expansion can all be modeled by successive multiplication of the adjacency matrix by itself.

As you raise \(A\) to higher and higher powers, you will be forced into the eigenspace corresponding to the largest eigenvalue in absolute value. The speed at which you reach that eigenspace is determined by how large the next eigenvalue is. If you want good mixing, expansion, etc., you are interested in having all of the other eigenvalues as small as possible.

Definition

A \(k\)-regular graph is **Ramanujan** if

\[|\lambda| \leq 2\sqrt{k - 1} \]

with the exception of \(\lambda_1 = k\).
The Riemann Zeta Function

Let \(s = \sigma + it \). The Riemann zeta function is defined by

\[
\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.
\]
The Riemann Zeta Function

Let \(s = \sigma + it \). The Riemann zeta function is defined by

\[
\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.
\]

Remark

By calculus, this sum converges for \(\sigma > 1 \).
The Riemann Zeta Function

Let $s = \sigma + it$. The Riemann zeta function is defined by

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

Remark

By calculus, this sum converges for $\sigma > 1$.

Remark

*There is a different way to express the zeta function which illustrates how it connects to the prime numbers. We can write $\zeta(s)$ as an Euler Product Expansion by

$$\zeta(s) = \prod_{p \text{ prime}} \left(1 - \frac{1}{p^s}\right)^{-1}.$$*
The Riemann hypothesis

After a lot of complex analysis, it’s possible to analytically continue $\zeta(s)$ to the entire complex plane, excepting a simple pole at $s = 1$. This means there is some other function $\hat{\zeta}(s)$ such that $\hat{\zeta}(s)$ agrees exactly with $\zeta(s)$ on $\sigma > 1$ and is analytic throughout the complex plane (minus the pole).
The Riemann hypothesis

After a lot of complex analysis, it’s possible to analytically continue $\zeta(s)$ to the entire complex plane, excepting a simple pole at $s = 1$. This means there is some other function $\hat{\zeta}(s)$ such that $\hat{\zeta}(s)$ agrees exactly with $\zeta(s)$ on $\sigma > 1$ and is analytic throughout the complex plane (minus the pole).

Remark

Neat fact: when you analytically continue and get $\hat{\zeta}(s)$, you get functional equations that let you evaluate the function for certain values. One well known value is:

$$\hat{\zeta}(-1) = -\frac{1}{12} \neq \sum_{n=1}^{\infty} n = 1 + 2 + 3 + \cdots$$
The Riemann hypothesis

After a lot of complex analysis, it’s possible to analytically continue $\zeta(s)$ to the entire complex plane, excepting a simple pole at $s = 1$. This means there is some other function $\hat{\zeta}(s)$ such that $\hat{\zeta}(s)$ agrees exactly with $\zeta(s)$ on $\sigma > 1$ and is analytic throughout the complex plane (minus the pole).

Remark

Neat fact: when you analytically continue and get $\hat{\zeta}(s)$, you get functional equations that let you evaluate the function for certain values. One well known value is:

$$\hat{\zeta}(-1) = -\frac{1}{12} \neq \sum_{n=1}^{\infty} n = 1 + 2 + 3 + \cdots$$

Definition

The Riemann Hypothesis states that if $\hat{\zeta}(s) = 0$; then s is a negative even integer or $\text{Re } s = \frac{1}{2}$.
We’d like to define a zeta function on a graph that mimics many of the properties of the Riemann zeta function.

- Our strategy is to use the Euler product expansion for the definition.
A Graph Zeta Function

We’d like to define a zeta function on a graph that mimics many of the properties of the Riemann zeta function.

- Our strategy is to use the Euler product expansion for the definition.
- First key hurdle: what in the world do we mean by a “prime” when we’re talking about a graph?
We’d like to define a zeta function on a graph that mimics many of the properties of the Riemann zeta function.

- Our strategy is to use the Euler product expansion for the definition.
- First key hurdle: what in the world do we mean by a “prime” when we’re talking about a graph?
- Some of the properties we’d hope to see: nice analytic continuation, functional equations, meaningful information encoded in a Riemann hypothesis, some analog of the prime number theorem.
We’d like to define a zeta function on a graph that mimics many of the properties of the Riemann zeta function.

- Our strategy is to use the Euler product expansion for the definition.
- First key hurdle: what in the world do we mean by a “prime” when we’re talking about a graph?
- Some of the properties we’d hope to see: nice analytic continuation, functional equations, meaningful information encoded in a Riemann hypothesis, some analog of the prime number theorem.

Throughout, we will let X be a finite, connected graph such that the degree of every vertex is at least 2.
What is a prime cycle?

Definition

A prime cycle is a closed path with no backtracking or tails and is not the m-multiple of some other closed path. We impose an equivalence relation on cycles by identifying cycles that differ by cyclic permutation.
What is a prime cycle?

Definition

A prime cycle is a closed path with no backtracking or tails and is not the m-multiple of some other closed path. We impose an equivalence relation on cycles by identifying cycles that differ by cyclic permutation.
What is a prime cycle?

Definition

A prime cycle is a closed path with no backtracking or tails and is not the m-multiple of some other closed path. We impose an equivalence relation on cycles by identifying cycles that differ by cyclic permutation.
What is a prime cycle?

Definition

A **prime cycle** is a closed path with no backtracking or tails and is not the m-**multiple** of some other closed path. We impose an equivalence relation on cycles by identifying cycles that differ by cyclic permutation.
What is a prime cycle?

Definition

A *prime cycle* is a closed path with no backtracking or tails and is not the m-multiple of some other closed path. We impose an equivalence relation on cycles by identifying cycles that differ by cyclic permutation.
We define the **Ihara-Selberg Zeta Function** for a finite graph X by

$$Z_X(u) = \prod_{[c]} \left(1 - u^{l(c)} \right)^{-1},$$

with $u \in \mathbb{C}$. Here, the product runs over all prime cycles, and $l(c)$ is the length of the cycle c.

The Ihara-Selberg Zeta Function
We define the **Ihara-Selberg Zeta Function** for a finite graph X by

$$Z_X(u) = \prod_{[c]} \left(1 - u^{l(c)}\right)^{-1},$$

with $u \in \mathbb{C}$. Here, the product runs over all prime cycles, and $l(c)$ is the length of the cycle c.

Some Properties:

- Generally the product is infinite.
- This actually turns out to be a rational function.
- There are nice, explicit factorizations.
To show that the zeta function is a rational function, we will realize it as a determinant expression. To define the appropriate operators, we must first change our framework. A graph is actually a pretty hard model to really work with here.
To show that the zeta function is a rational function, we will realize it as a determinant expression. To define the appropriate operators, we must first change our framework. A graph is actually a pretty hard model to really work with here.

Consider an edge which is part of some graph:
To show that the zeta function is a rational function, we will realize it as a determinant expression. To define the appropriate operators, we must first change our framework. A graph is actually a pretty hard model to really work with here.

Consider an edge which is part of some graph:

A prime cycle could use this edge by going from left to right, or...
To show that the zeta function is a rational function, we will realize it as a determinant expression. To define the appropriate operators, we must first change our framework. A graph is actually a pretty hard model to really work with here.

Consider an edge which is part of some graph:

A prime cycle could use this edge by going from left to right, or... by going from right to left.
Oriented Line Graph Construction

To simplify matters, we construct an oriented line graph via
Oriented Line Graph Construction

To simplify matters, we construct an oriented line graph via

- We replace each edge with two oriented edges to model the two ways we could use the edge.
Oriented Line Graph Construction

To simplify matters, we construct an oriented line graph via

- We replace each edge with two oriented edges to model the two ways we could use the edge.
- Now we construct a new graph L via

$$V_L = E(X_o),$$
$$E_L^o = \{(e_i, e_j) \in E(X_o) \times E(X_o); \bar{e}_i \neq e_j, t(e_i) = o(e_j)\}.$$
The oriented line graph has several important properties:

- It is strongly connected.
- It exactly mimics the prime cycle structure of the original graph.
- The zeta function of a strongly connected, oriented graph is easy to factor!
Perron-Frobenius Operator

Definition

For a strongly connected, oriented graph the **Perron-Frobenius operator** T is a matrix given by setting the i,j-entry to 1 if there is an oriented edge with v_i as the start and v_j as the terminus, and setting it to be zero otherwise. This is an oriented version of the adjacency operator of a graph.
Perron-Frobenius Operator

Definition

For a strongly connected, oriented graph the Perron-Frobenius operator T is a matrix given by setting the i,j-entry to 1 if there is an oriented edge with v_i as the start and v_j as the terminus, and setting it to be zero otherwise. This is an oriented version of the adjacency operator of a graph.

Then,

$$Z_X(u) = \det (I - uT)^{-1}.$$
Finishing our example
Finishing our example

\[
T = \begin{pmatrix}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1
\end{pmatrix}
\]
Still finishing our example...

Now that we have the T operator, we can work out the zeta function explicitly:

$$Z_X(u) = \frac{1}{1 - 4u^3 - 2u^4 + 4u^6 + 4u^7 + u^8 - 4u^{10}}.$$
Bass’ Factorization

So far, we’ve realized that the zeta function is a rational function and have the means to compute it. There is a much prettier factorization due to Hyman Bass which is easier to compute and gives us a better tool for theoretical calculations.
Bass’ Factorization

So far, we’ve realized that the zeta function is a rational function and have the means to compute it. There is a much prettier factorization due to Hyman Bass which is easier to compute and gives us a better tool for theoretical calculations.

Theorem (Bass, 1992)

Let X be a finite, connected graph as before. Then

$$Z_X(u) = (1 - u^2)^\chi \det(I - uA + u^2Q)^{-1},$$

where $\chi = |V| - |E|$ is the Euler Number of X, A is the adjacency matrix, and Q is a diagonal matrix with entries $d(v_i) - 1$.

Remark

As a corollary to Bass’ theorem, when X is k-regular, we get functional equations which relate the value at u to the value at $\frac{1}{(k-1)u}$.
Let’s take a closer look at Bass' factorization, particularly when our graph is \((q + 1)\)-regular, and look for poles:

\[
Z_X(u)^{-1} = (1 - u^2)^{-\chi} \times \det[l - Au + qlu^2].
\]
The Poles of the zeta function

Let’s take a closer look at Bass’ factorization, particularly when our graph is \((q + 1)\)-regular, and look for poles:

\[
Z_X(u)^{-1} = (1 - u^2)^{-\chi} \times \det[l - Au + qlu^2].
\]

There are \(-\chi\) poles at \(u = 1\) and at \(u = -1\).
The Poles of the zeta function

Let’s take a closer look at Bass’ factorization, particularly when our graph is \((q + 1)\)-regular, and look for poles:

\[
Z_X(u)^{-1} = (1 - u^2)^{-\chi} \times \det[l - Au + qlu^2].
\]

There are \(-\chi\) poles at \(u = 1\) and at \(u = -1\).
The Poles of the zeta function

Let’s take a closer look at Bass’ factorization, particularly when our graph is \((q + 1)\)-regular, and look for poles:

\[
Z_X(u)^{-1} = (1 - u^2)^{-\chi} \times \prod_{\lambda \in \text{Spec}(A)} [1 - \lambda u + qu^2].
\]

- There are \(-\chi\) poles at \(u = 1\) and at \(u = -1\).
The Poles of the zeta function

Let’s take a closer look at Bass’ factorization, particularly when our graph is \((q + 1)\)-regular, and look for poles:

\[
Z\chi(u)^{-1} = (1 - u^2)^{-\chi} \times \prod_{\lambda \in \text{Spec}(A)} [1 - \lambda u + qu^2].
\]

- There are \(-\chi\) poles at \(u = 1\) and at \(u = -1\).
- There is a pole at \(u = 1\) and at \(u = \frac{1}{q}\) corresponding to the eigenvalue \(\lambda_1 = q + 1\).
The Poles of the zeta function

Let’s take a closer look at Bass’ factorization, particularly when our graph is \((q + 1)\)-regular, and look for poles:

\[
Z_X(u)^{-1} = (1 - u^2)^{-\chi} \times \prod_{\lambda \in \text{Spec}(A)} [1 - \lambda u + qu^2].
\]

- There are \(-\chi\) poles at \(u = 1\) and at \(u = -1\).
- There is a pole at \(u = 1\) and at \(u = \frac{1}{q}\) corresponding to the eigenvalue \(\lambda_1 = q + 1\).
- All of the complex poles lie on the circle in \(\mathbb{C}\) given by \(|r| = \frac{1}{\sqrt{q}}\).
The Poles of the zeta function

Let’s take a closer look at Bass’ factorization, particularly when our graph is \((q + 1)\)-regular, and look for poles:

\[
Z_X(u)^{-1} = (1 - u^2)^{-\chi} \times \prod_{\lambda \in \text{Spec}(A)} [1 - \lambda u + qu^2].
\]

- There are \(-\chi\) poles at \(u = 1\) and at \(u = -1\).
- There is a pole at \(u = 1\) and at \(u = \frac{1}{q}\) corresponding to the eigenvalue \(\lambda_1 = q + 1\).
- All of the complex poles lie on the circle in \(\mathbb{C}\) given by \(|r| = \frac{1}{\sqrt{q}}\).
- All other poles are in a specified interval of the real line.
Let’s take a closer look at the polynomial $f(u) = qu^2 - \lambda u + 1$. The discriminant is

$$\Delta = \lambda^2 - 4q.$$
Let’s take a closer look at the polynomial $f(u) = qu^2 - \lambda u + 1$. The discriminant is

$$\Delta = \lambda^2 - 4q.$$

We get a complex pole whenever the discriminant is negative; ie, whenever

$$|\lambda| \leq 2\sqrt{q}.$$
The Complex Poles

Let’s take a closer look at the polynomial $f(u) = qu^2 - \lambda u + 1$. The discriminant is

$$\Delta = \lambda^2 - 4q.\$$

We get a complex pole whenever the discriminant is negative; ie, whenever

$$|\lambda| \leq 2\sqrt{q}.\$$

This relation looks very familiar!
Graph Riemann Hypothesis

We could state a Riemann Hypothesis for this zeta function as follows:

Definition

Let X be a $(q + 1)$-regular graph. Then $Z_X(u)$ is said to satisfy the Riemann Hypothesis if the only real poles are a simple pole at $u = \frac{1}{q}$ and poles with absolute value 1.

Equivalently, let $u = q^{-s}$. Then $Z_X(q^{-s})$ satisfies the Riemann Hypothesis if whenever $Z_X(q^{-s}) = 0$ and $\text{Re } s \in (0, 1)$, we have $\text{Re } s = \frac{1}{2}$.

Chris Storm (Dartmouth College)

The Ihara-Selberg Zeta Function

September 18, 2006
We could state a Riemann Hypothesis for this zeta function as follows:

Definition

Let X be a $(q + 1)$-regular graph. Then $Z_X(u)$ is said to satisfy the Riemann Hypothesis if the only real poles are a simple pole at $u = \frac{1}{q}$ and poles with absolute value 1.

Equivalently, let $u = q^{-s}$. Then $Z_X(q^{-s})$ satisfies the Riemann Hypothesis if whenever $Z_X(q^{-s}) = 0$ and $\text{Re} \ s \in (0, 1)$, we have $\text{Re} \ s = \frac{1}{2}$.

Theorem

A $(q + 1)$-regular graph satisfies the Riemann Hypothesis if and only if X is a Ramanujan graph.
As a graph invariant

Most of the previous discussion has been concerned with actual properties of the function. Perhaps a more important question is: what in the world does this function tell us about the graph?
As a graph invariant

Most of the previous discussion has been concerned with actual properties of the function. Perhaps a more important question is: what in the world does this function tell us about the graph?

There are two directions this question can take:

- Someone hands me the zeta function, what physical properties (number of triangles, colourability, ...) can I attribute to the graph?
- Someone gives me two graphs which have the same (or different) zeta function. What conclusions can I draw about the graphs?
Distinguishing graphs

We will look very briefly at the second question. What can I saw about graphs which have the same zeta function?
Distinguishing graphs

We will look very briefly at the second question. What can I saw about graphs which have the same zeta function?

Theorem (Mellein, 2001)

Suppose X and Y are both k-regular graphs. Then $Z_X(u) = Z_Y(u)$ if and only if $\text{Spec}(X) = \text{Spec}(Y)$.

Remark

If we remove the regularity condition, all bets are off. There are plenty of examples of graphs with the same adjacency matrix spectrum or the same laplacian spectrum that have different zeta functions. There aren’t currently any known examples of graphs with the same zeta function but different operator spectrums, though.
The previous theorem suggests that knowing all about the cycle structure of a graph is only enough to get you spectral information when the graph is regular. We need some way to tweak the zeta function to rely more on the actual structure and less on the spectrum.
Beating the theorem...

The previous theorem suggests that knowing all about the cycle structure of a graph is only enough to get you spectral information when the graph is regular. We need some way to tweak the zeta function to rely more on the actual structure and less on the spectrum.

Can we take prime cycles as before but throw away any prime cycle that uses two red edges in a row? When we form the product, what happens? This has the potential to be quite interesting and to broaden the theory.
Beating the theorem...

The previous theorem suggests that knowing all about the cycle structure of a graph is only enough to get you spectral information when the graph is regular. We need some way to tweak the zeta function to rely more on the actual structure and less on the spectrum.

Can we take prime cycles as before but throw away any prime cycle that uses two red edges in a row? When we form the product, what happens? This has the potential to be quite interesting and to broaden the theory.
Distinguishing Cospectral Graphs

\[X_1 \]

\[X_2 \]