
P2P as botnet command and control: a deeper insight

David Dittrich
Applied Physics Laboratory
University of Washington

dittrich@u.washington.edu

Sven Dietrich
Computer Science Department
Stevens Institute of Technology
spock@cs.stevens.edu

Abstract

The research community is now focusing on the in-
tegration of peer-to-peer (P2P) concepts as incremen-
tal improvements to distributed malicious software net-
works (now generically referred to as botnets). While
much research exists in the field of P2P in terms of pro-
tocols, scalability, and availability of content in P2P
file sharing networks, less exists (until this last year)
in terms of the shift in C&C from central C&C using
clear-text protocols, such as IRC and HTTP, to dis-
tributed mechanisms for C&C where the botnet becomes
the C&C, and is resilient to attempts to mitigate it.

In this paper we review some of the recent work in
understanding the newest botnets that employ P2P tech-
nology to increase their survivability, and to conceal
the identities of their operators. We extend work done
to date in explaining some of the features of the Nu-
gache P2P botnet, and compare how current proposals
for dealing with P2P botnets would or would not affect
a pure-P2P botnet like Nugache. Our findings are based
on a comprehensive 2-year study of this botnet.

1 Introduction

There has been tremendous interest paid in the past
year to Peer-to-peer botnets, principally Storm, a hybrid
bot that uses the Overnet peer-to-peer (P2P) protocol for
bots to find their concealed central command and control
(C&C) servers.

Most papers now refer to any distributed malware
network as a botnet (regardless of whether it has any-
thing to do with IRC, where the term bot, short for robot
was first used.) There is a strong bias in many botnet pa-
pers, be they IRC or P2P based, on the use of worm-like
methods of propagation, and to focus on central com-
mand and control (C&C) concepts as the means to ob-

serve botnet activity, count bots, and to mitigate the bot-
net by taking control of the central C&C channel away
from the botnet operator.

The research community has been warning about the
advent of P2P malware since at least 2005, [2, 8, 4] but
not until after 2007 when the Storm trojan gained wide
media attention had there been many deep studies into
botnets moving to the use of P2P concepts for C&C.
One of the biggest hurdles posed by P2P malware, as op-
posed to the more widely seen central IRC-based com-
mand and control botnets, is the difficulty in estimating
the size of the P2P botnet and means of rendering the
botnet unusable. In this paper, we review some of the
research to date into P2P malware networks, and give
further and complementary insights into the most suc-
cessful pure-P2P botnet network seen to date, Nugache1

[20], and show the challenges in dealing with this type
of botnet.

The paper is structured as follows: we provide an ex-
tensive comparison, as well as clarification and correc-
tion, to existing work in Section 2, describe the data col-
lection mechanism for our study in Section 3, and show
some results of the traffic analysis in Section 4.

2 Related Work

The existence of Nugache was documented widely
in the anti-virus/malware community in late April, early
May 2006, [14] but variants ceased to be directly de-
tected by anti-virus (AV) engines in the latter part of
2006. Since Nugache was initially easily identified
through some invariant aspects within the host file sys-
tem and through connections on port 8/tcp, it may be
that the investment in time to do more detailed and
time intensive analysis was not deemed to be worth-
while. Once the Nugache program was altered to use

1Documents [27, 12] disclosing the author of Nugache were re-
leased in late June 2008.

1



random high-numbered service ports for each bot, the
malware dropped off of nearly everyone’s radar. An-
other round of analyses were done by AV vendors in
December 2006, as the operators of the Nugache net-
work began propagating the malware by way of blog
posts and spam that directed users to a dropper identi-
fied as TROJ DLOADER.IBZ. [24, 25, 26, 15]

In January 2008, Nugache received a burst of atten-
tion in relation to two other botnets, Storm and Rizo (a
classic IRC-based central C&C botnet.) This resulted
from a talk in November 2007 and article that followed
in December 2007 [6] that discussed sharing of malware
code, concepts, and propagation techniques. Some arti-
cles [11] claimed that Nugache was overtaking Storm in
size and was responsible for a recent drop in bot prices
on the black market. This is not supported by our anal-
ysis, which shows no observed commands or activity
in the Nugache network since September 2007, and the
population of Nugache nodes had shown a downward
trend in size that continues to this day. [3] This drop-off
could be explained by the arrest of the Nugache author
in early September 2007. [27, 12]

Trend Micro [23] discuss P2P for C&C, but discount
it due to latency issues. Nugache, on the other hand,
supports adding latency through the use of random du-
ration Sleep() calls (see Section 4.1.1). In their list
of rallying mechanisms, they include hard-coding and
two ways of using DNS, but do not foresee P2P as a ral-
lying mechanism, nor do they take into consideration a
two-phase method of rallying that involves pre-seeding
a list on a host with up-to-date contact points, rather than
the more naive method of using only the hard-coded ad-
dresses in the binary, which necessitates updating the bi-
nary to update the seed list. Nugache solves these prob-
lems in a very elegant way not observed in other pub-
lished research listed here.

In February 2007, Schoof and Koning analyzed the
April 2006 version of Nugache (the version that uses
port 8/tcp.) [18] While they noted obvious aspects, such
as the use of Windows Registry keys, they did not fully
comprehend the role of the Windows Registry keys for
maintaining a list of likely servent peers in relation to
the hard-coded list of 22 default hosts.2

A year later, Steggink and Idziejcak [19] claim,
“Only one bot, Peacomm is build [sic] from the ground
with a complete decentralized P2P structure,” which
seems to contradict earlier work [18] and is inconsistent
with the observations of other researchers who found

2They did not know, for example, that if the Registry is already
filled with a peer list, there is no need for the bot to use the default list
at all. In fact, this is the technique used by the trojan horse dropper
that infects hosts with Nugache.

Storm to be a more conventional trojan – albeit multi-
partite, very versatile and flexible – that used Overnet
only to conceal its central C&C servers, not as the C&C
mechanism itself. [16, 20, 9]

In February 2007, Vogt, et al, [28] discuss the fea-
sibility of creating a hypothetical super botnet. Their
model assumes a single worm is used for propagation,
with an algorithm that requires the adversary make some
complicated choices in order to create the super botnet,
and poses a problem to the attacker of propagating rout-
ing information throughout the super botnet without ex-
posing the complete routing information to defenders or
rivals. They claim that C&C in and of itself is a weak-
ness that would expose the super botnet. They postu-
late how their concept of a super botnet would be con-
structed using many C&C servers, each provided with
routing information using a complex algorithm. They
also propose another complex algorithm for the attacker
concealing their location using encrypted time bombs.

Our study of Nugache shows that there are much sim-
pler ways to achieve the same effects proposed by Vogt
et al. [28], and in some cases with fewer drawbacks
than suggested for their super botnet. We believe that
the problem is not C&C itself – a botnet would be use-
less if the adversary could not control it! – but rather the
weakness lies in the use of central C&C, especially in
clear text. [3] By creating a super botnet that relies on
multiple, relatively easily detectible central C&C points,
there is little additional survivability beyond what some
attackers gain today by using multiple small botnets in-
stead of one large one. Their main contribution is sug-
gesting how attackers might do more elaborate encryp-
tion of commands than is done even by Nugache, which
is more sophisticated in its use of encryption than other
malware discussed to date, even Storm. [20]

The continued focus on central C&C on the defensive
side can also affect detection of pure-P2P malware. If
the detection mechanism relies on closely-timed connec-
tions to a central point, pure-P2P malware would not be
detected. At the same time, pure-P2P malware contain-
ing obsolete seed lists can trigger false-positive “scan-
ning” events. [7]

Also in April 2007, Wang, et al, [29] describe a the-
oretical advanced hybrid peer-to-peer botnet, based in
part on a cursory analysis of a version of the Nugache
P2P bot from May/June of 2006 (mentioned earlier in
this section.) Many features of their proposed bot are
shared by the more recent version of Nugache that was
still active at the time, however their work is more spec-
ulative than factually descriptive of Nugache’s actual de-
sign [5]. They claimed weaknesses in Nugache, includ-

2



ing the same mistake regarding the seed list [18]. Those
weaknesses and some of the advantages of their theo-
retic hybrid do not hold true for the current state of de-
velopment of Nugache. These authors, like others, have
a strong affinity towards worm-like rapid propagation
and central C&C concepts. Their proposed advanced
hybrid, and their models for its robustness, assume this,
and extend the central C&C model to include multiple
C&C servers that are announced, or retrieved, in order
to maintain the advanced botnet. While they propose
an interesting propagation model and peer-list updating
mechanism, including a manual update command that
the operator must execute at critical points in the botnet
growth, this is not how Nugache works in practice.

Nugache has a much simpler mechanism that is auto-
matic, independent of propagation activity, and does not
require peers to poll for routing information. Neither is
there a requirement for bulk-transfers of routing infor-
mation beyond when new peers first join the network.
[3] While both other works [29, 28] assume worm-like
propagation, with reinfection having to be factored in
via a routing information distribution requirement, we
agree with the authors that this assumption is not a real-
world consideration. Our observations of Nugache bear
this out (see Section 4.2). Finally, the requirement of
an update command and sensors itself introduces a fa-
tal weakness in the design of the advanced hybrid bot-
net, which itself could be used to enumerate and identify
peers as they point out in their proposed defenses. Nu-
gache does not suffer this weakness, nor might it readily
succumb to the other two strategies for mitigation sug-
gested by Wang, et al, namely: (a) taking out the peer list
updating servents or high-degree of connectivity nodes,
neither of which exist in the Nugache network, or; (b)
randomly removing even a large percentage of servents,
which in Nugache are somewhat independent.3 [3]

3 Data Collection

In order to get a much more detailed and comprehen-
sive picture of the attacker’s activity, network-level data
is required. This includes full-packet captures that al-
low detailed analysis of individual network flows, mech-
anisms of attacking vulnerable target systems, Domain
Name System lookups, and C&C sessions.

3It is the assumption that the advanced hybrid botnet uses a modi-
fied central C&C mechanism that provides the strongest proposed de-
fense, which attacks this assumed weakness. Some have suggested
that multiple defensive counter-attack strategies at once may be more
effective than naive defenses when dealing with complex distributed
attack networks. [13]

It also includes higher-level meta-data about connec-
tions, such as that obtained from IP packet headers.
Source and destination host addresses, times, durations
of flows, all of these things are not easily determined
through just analysis of host-level data.

The actual content of flows, however, is only easily
observed if there is no use of encryption. This is one
of the principle problems faced in the analysis of Nu-
gache, since its most recent incarnation does all C&C,
as well as binary updates, over its heavily encrypted P2P
channel. Without visibility on individual flows, analysis
must focus instead on the remaining available meta-data
listed above and how it relates to available host-level
data, including reverse engineering of the malware itself,
or attacking the cryptography using less direct methods.
Knowledge can still be gained from the meta-data level,
including learning about active peers, how the attacker
is using the network, when the malware updates itself,
etc.

The network traffic analyzed in this paper was col-
lected using two early development releases (versions
roo-1.0.194 and roo-1.1-RC-2; the current release is roo-
1.4) of the Honeynet Project’s Honeywall bootable CD-
ROM. [22] The Honeywall captures full-packet data and
stores it, and flow related information, for later analysis,
as per the Honeynet Project’s definition of Data Cap-
ture. [21] The collected information comprises header
data, Snort intrusion detection signatures, passive oper-
ating system fingerprints, as well as full packet captures
that illustrate the exchanges between the hosts.

The Honeywall provided a good foundation for the
capture of network traffic, as it has basic alerting capa-
bilities, and the ability to throttle some outbound scan-
ning traffic, and a mechanism for remotely blocking ac-
cess to the honeypot if/when an emergency occurs [22].
The Honeywall was not, however, designed to analyze a
P2P malware artifact and and we had to overcome some
limitations through programming new functionality on
top of the basic Honeywall.

4 Network Traffic Analysis

Due the use of strong cryptography, there is very lit-
tle information that can be directly obtained from mon-
itoring network traffic. Early versions of Nugache still
had an IRC based C&C mechanism, but after C&C was
moved to the encrypted P2P channel, only indirect ob-
servations could be made from network traffic analysis
alone.

The three principle foci for network traffic analy-
sis were: (1) observations related to P2P connections;

3



(2) observations about scanning activity associated with
propagation through exploitation of remote vulnerabili-
ties in LSASS and DCOM services; and (3) observations
of DDoS attacks performed using the P2P network.

4.1 Peer-to-Peer Connections

4.1.1 Peers over time

During an approximately 2 month period in mid-2006,
a total of 1974 IP addresses were witnessed engaging
in port 8/tcp connections, either inbound or outbound to
our honeypot. Some of the outbound connections failed,
due to the peers being no longer active, being behind a
firewall, or blocked by an IPS.4

Comparison of the list of 8/tcp IP addresses – either
successful or failed connections – with two lists of peers
seen in IRC traffic shows that there is limited overlap
between these sets. The two largest sets of peers seen
in IRC contain 1428 and 1206 peers each, respectively.
(The first flow was obtained in mid-May 2006 and lasted
34 minutes, and the second one was obtained late May
2006 and lasted 2 minutes.) The overlap between them
is 284 IP addresses. Comparing each of these IP address
lists with the list of 1974 IP addresses seen in port 8/tcp
flows during this six-week period finds 195 IP addresses
in common with the second set and 228 IP addresses in
common with the first set. There are 84 IP addresses in
common to all three sets.

Some of this difference could be accounted for
through use of dynamic addresses (e.g., high-speed di-
alup lines or peers moving between DHCP assigned
addresses.) Another cause could be attrition of peers
through identification and cleanup. These are some of
the same issues identified by Bhagwan et al. [1], and
make it inaccurate to call these lists of peers and not just
IP addresses.

More worrisome was the possibility that there were
many more compromised hosts than was evident from
network traffic captured at the single point of observa-
tion initially set up for this analysis. The P2P mecha-
nism for primary C&C could be allowing the attacker to
control a significantly larger number of hosts and only
bring a small percentage (say 10%) of them at any one
time into service for scanning or propagation activity.
Later on, as we were able to decrypt some of the flows
with the aid of host-based tools5, we were able to ver-

4We discovered that one particular IPS appears to have been tuned
by an operator with a sense of humor, who configured their IPS to re-
spond to incoming SYN packets on port 8/tcp with ACK—RST pack-
ets containing as the data payload the string, Go away, we’re not home.

5Without going into details, reverse engineering allowed us to iden-

ify the Nugache operator was using probabilistic dele-
gation, which could account for some of the small set
overlap we had observed, as seen here:

if(Rand(0,99)==0)) {
Sleep(Rand(0, 16000000));
Logs.Send("208.77.188.166", 31337);

}

Enumeration of this botnet in related work [3] re-
vealed that at its peak there must have been at least 6,000
active IP:port pairs at any given time, with a total in-
fected footprint of close to 11,000 IP:port pairs. While
some regularly scheduled snapshots revealed IP:port
pair sets of about 1,500 in June 2007, the intersection
of them would only be about 700-800 IP:port pairs due
to fluctuations in host reachability and IP address reas-
signment. Recent events [12] explain why the botnet has
been decaying since summer 2007.

4.1.2 Peer Key Exchange

The malware uses 256-bit Rijndael to encrypt the P2P
based command and control communication [20]. The
session key is exchanged RSA-style with ephemeral
512-bit (64 byte) to 1024-bit (128 byte) keys.

For a 512-bit key exchange, it functions as follows:
Peer A sends 00 02 to Peer B to announce a peer key
exchange, followed by 64 bytes. Peer B, in turn, replies
with 64 bytes, followed by a series of acknowledgment
and keep-alive messages. More precisely:

1. Peer A generates two large prime numbers p and q,
and computes the 512-bit (or 64 byte) modulus n =
pq and φ = (p − 1)(q − 1). Peers A and B share
the public exponent e = 65537 (216 + 1). Peer A
also generates the decryption exponent d such that
ed = 1 mod φ. Peer A sends n over to M.

2. Peer B receives n and creates a PKCS#1 v1.5 [10]
RSA encryption message M as outlined in Table 1,
and encrypts it to a message C = Me mod n.

3. Peer B decrypts the message as M ′ = Cd mod
n, and extracts the 32-byte (or 256-bit) session key
from the message.

4. Both peers are encrypting the connection using
Rijndael-256-OFB.

tify runtime in-memory data structures from which the Rijndael en-
cryption keys could be reconstructed. Given a memory dump, and
full-packet data captures, any/all flows initiated in one direction can
be manually decrypted.

4



00 02 nonce (21 bytes) check (4 bytes) session key (32 bytes) TestN (4 bytes)

Table 1. One example of a RFC2313-inspired key exchange message M

4.1.3 Traffic on Peer-to-Peer Port

The malware receives several inbound connections per
day, and makes (or attempts to make) several outbound
connections per day. Overall there are about a dozen
connections active at a given time, and comprise regular
peer list exchanges, software comparisons and upgrades,
and simple commands via a set of numeric commands
[20].

One possibility that was contemplated in the early
stages of analysis was that the P2P protocol exists pri-
marily to prevent anyone who finds a peer from being
able to see more than a small percentage (maybe 10% or
less) of the entire P2P network, until such time as the at-
tacker wants to use the P2P network and instructs them
all to go join a specific IRC channel, listen for com-
mands and execute them, then disconnect until further
notice. This would mean a defender finding a single peer
would have only a very small window of time in which
to catch an IRC connection and determine the complete
extent of the P2P network. (The delay between IRC con-
nections showing up appeared to be on the order of a
week, and the connections appeared to last only a short
period of time, on the order of an hour or so.) After the
upgrade in June 2006 when the C&C port changed to
randomly chosen port numbers above 1024, the bot au-
thors shifted their primary C&C from IRC channels to
the P2P channel.

4.1.4 Traffic on IRC
In the early versions of Nugache, we witnessed several
IRC sessions (in clear text), with as many as 1043
peers in one of the channels. There are at least two
IRC sessions that involved scanning. Here are unique
commands6 sent to the channel:

#ch4nn3l :notify:this
#ch4nn3l :quit:ch4nn3l
#ch4nn3l :scan:exploit,lsass
#ch4nn3l :scan:payload,HTTPEXEC,http://

www.[deleted].com/files/a.exe
#ch4nn3l :scan:start,3000
#ch4nn3l :scan:target,add,192.168.0.*
#ch4nn3l :scan:target,add,192.168.1.*
#ch4nn3l :scan:target,add,192.168.100.*
#ch4nn3l :scan:target,add,R5000
#ch4nn3l :scan:target,current
#ch4nn3l :spaim:10

6Only the channel and domain name are obfuscated. The rest of
the commands are verbatim.

This excerpt shows examples of C&C traffic instruct-
ing the peers to use the LSASS exploit, forcing down-
loading of the malware from the specified URL, and tar-
geting three non-routable address blocks (as defined by
RFC 1918[17]) and 5000 randomly selected addresses.7

The RFC1918 address blocks are the ones typically
found behind firewalls, broadband routers, and other pri-
vate networks, which would be otherwise inaccessible to
the attacker. Not only that, but these three specific non-
routable blocks being scanned by the Nugache opera-
tor were the defaults used by three of the most common
commodity network devices, implying the attacker was
purposefully scanning behind any network defenses on
home or small-office/home-office (SOHO) networks.

Subsequent scanning, as seen in Table 2show target-
ing of the only hosts on the local routable network, or
exclusively random addresses.8

4.2 Propagation

The controllers of Nugache have employed multiple
methods of propagation, from direct attack against re-
motely accessible services (and attacking hosts behind
commodity NAT and WiFi devices), to completely indi-
rect attacks using some clever social engineering meth-
ods.

The malware itself is capable of direct propagation
via three mechanisms: (1) Exploitation of remotely ac-
cessible vulnerabilities in the LSASS service (139/tcp)
and RPC-DCOM (445/tcp); (2) Emailing copies of itself
to potential targets obtained from the Windows Address
Book (WAB) that do not contain certain keywords.9; and
(3) Via instant messenger (AIM and MSN), sending the
potential victim a message created from randomly cho-
sen sentence fragments accompanied by a link for the
victim to click on.

Another mechanism for indirect propagation was ob-
served, involving a complex form of a trojan horse, or
dropper, attack. The attack works like this:

7“Random” in this context is defined to be 1.*.*.* through
223.*.*.*. These are the originally defined IPv4 “Class A” through
“Class C” network address ranges.

8Because of differences in the way the honeywall “data control”
mechanisms were set, some scanning times are longer than others.
This does not represent the maximum scan rate that could be obtained
by this malware.

9This would prevent mail from going to system administrators or
support personnel.

5



Targets Port Month Duration
192.168.0.*,

445/tcp May 2006 38 min192.168.1.*,
192.168.100.*,
Random
192.168.0.*,

445/tcp Jun 2006 51 min192.168.1.*,
192.168.100.*
192.168.0.*,

445/tcp Jun 2006 2.25 days192.168.1.*,
10.1.*.*
192.168.0.* 445/tcp Jul 2006 6 min
Local net 445/tcp Sep 2006 11 min
Local net 445/tcp Sep 2006 2 h 8 min
Local net 139/tcp Sep 2006 13 min
Local net 445/tcp Sep 2006 12 min
Local net 139/tcp Sep 2006 2 h 44 min
Random 139/tcp Oct 2006 1 h 3 min
Random 445/tcp Oct 2006 24 min
Random 445/tcp Oct 2006 34 h 24 min
Random 139/tcp Oct 2006 2.33 days
Random 139/tcp Oct 2006 6.75 days
Random 139/tcp Oct 2006 3.25 days
Random 139/tcp Oct 2006 19 h 8 min
Random 139/tcp Oct 2006 23 h 33 min
Random 139/tcp Nov 2006 2 h 10 min
Random 139/tcp Nov 2006 8 h 7 min
Random 139/tcp Dec 2006 7 h 6 min
Random 139/tcp Dec 2006 26 min
Random 139/tcp June 2007 54 min

Table 2. Observed Scanning/Exploit Be-
havior

• The attacker selects a freeware application (in
this case, a video editing application). A copy
of the distribution archive is downloaded and the
SETUP.EXE program is altered to include a list of
300 active peers and bootstrap code that connects
to one of these peers, downloads the malware, and
installs/runs it.

• The attacker sets up a web server on the Internet
and registers a domain name, in this case a variation
on a popular web service. The default web page on
this server is a duplicate of the popular web service,
looking and acting exactly like the real site. Else-
where on the server is a special application (PHP
script) that serves up a copy of the malware, as well
as a copy of the altered freeware application distri-
bution archive file.

• The attackers then place links on popular freeware
download aggregator sites where users go to search
for freeware/shareware applications. Two popular
sites have been used to date. The download link

points to the trojan horse archive. The aggregator
sites claim the download file is “guaranteed 100%
free of viruses or spyware” (a claim that, in this
case, is false, however AV engines have never seen
this malware downloader, so they would report it
virus-free anyway.)

• The attacker then uses an active Nugache P2P net-
work to “download” the archive thousands of times
in a short period of time, rocketing the trojaned
archive to the top of the popularity charts (in fact,
to the #1 most download file on one site.) Anyone
going to the home page of this site, and looking at
the Top Ten list, would see this trojaned archive as
the most popular program on the site. The peers do
not in fact download the file, but simply make the
proper HTTP POST command to trigger the down-
load counter. Enough of a delay is introduced be-
tween POSTs so as to not effect a denial of service
attack, only to boost the download counter to a suf-
ficient degree to raise the popularity rating of the
trojaned archive.

4.3 DDoS Related Activity

During the period of observation, there were only a
handful of instances in which DDoS activity was ob-
served: once involving an HTTP GET attack against a
commercial victim, another instance of what may have
been extortion10 related attacks against three commer-
cial sites, and one involving a UDP flooding attack.
There was also some low-level HTTP GET activity,
which at first appeared to be a DDoS attack, but closer
analysis showed that these requests were used to in-
crease the popularity of a trojan horse installer described
in the previous section.

4.3.1 HTTP GET flooding attack

HTTP GET flooding was observed in October 2006, over
a two-day period, all directed towards a single target
served by a DDoS defense service.

In the HTTP GET flooding attacks, we observed that
the malware was coded to randomize the target path in
the URI of the GET request in ways designed to defeat
the filtering mechanisms employed. The frequency of

10One series of attacks over period of days, two weeks prior to
Valentine’s Day 2007, targeted three online jewelry stores. One of
the three targets was hit much harder than the others, while one at-
tack failed altogether, due it is believed to a bug in the code; The two
commands that generated outbound packets used complete URLs in-
cluding prototype, DNS name, and path, while the command that was
not accompanied by outbound traffic specified only a DNS name.)

6



Figure 1. Observed UDP flooding activity

initiating GET requests was varied (as is common in
DDoS attacks) in order to use the minimal attack re-
sources necessary to achieve the objective of disrupting
the target service.

Also observed was an amplification effect caused by
the mitigation mechanism itself. For every ∼100 byte
HTTP request, a ∼400 byte reply was sent back indicat-
ing the request had been refused due to suspected DDoS
activity. While this is a relatively small (4x) amplifica-
tion effect, it occurred within the target network infras-
tructure, maximizing the DoS effect on the victim. The
attacker would thus need 1/4 the number of agents to
saturate the victim’s network resources. Reacting to this
issue, changes to the system used to protect the target
were implemented, reducing the effectiveness of possi-
ble future attacks (requiring more than 4x the number of
attacking hosts to get the same effect.) Unfortunately,
even with an effective reaction to this type of attack, the
attacker can always result to a traffic consumption attack
involving non-TCP based floods. This brings us to the
next attack method observed, a UDP packet flood.

4.3.2 UDP Flooding

DDoS attack traffic involving UDP flooding was ob-
served in the middle of December 2006, with seven
targets in common between the two agents we con-
trolled at the time. The targets were a handful of non-
commercially related hosts on broadband/DSL lines.
Both nodes being observed started and ended their at-
tacks within seconds of each other, and sent similar traf-
fic to the same targets. Figure 1 shows the bandwidth
utilization graph for one of the two nodes.

Analysis of the network traffic showed a distinct large
packet (∼1100 bytes) coming from one peer to peer A.
Peer A immediately sends out a similarly sized packet
to 6 peers. Another similar sized packet comes in from a

second peer, but this time there is no packet from peer A.
Peer A then begins flooding the target. Within less than
a second, the same behavior – incoming large packet,
relayed to a handful of peers, second incoming large
packet with no relay, followed by initiation of flooding
– involving peer B. This observation is consistent with
a TTL-based request transmission mechanism through a
P2P network as used by some P2P protocols.

5 Conclusion

We have seen a quick survey of the research done
recently in the analysis and possible mitigation of ad-
vanced botnets using P2P technology. We have cor-
rected some misconceptions based on a real-world ex-
ample of a peer-to-peer malware artifact designed for re-
silience against disruption or take over, creating a strong
network for conduct of activities questionable in nature.
The difficulty of observing the C&C traffic represents
a hurdle that a competitor or a network defender must
undertake.

The constant, evolutionary steps over the past six
years towards integrating P2P as the primary C&C
mechanism [4] have possibly reached a new plateau in
distributed malware. The current detection and mitiga-
tion approaches, such as DNS-based or text-based sig-
nature detection, will be impeded by this new class of
distributed malware.

The success of Nugache at being active for so long,
with little general attention, shows that low-volume
activity and indirect means of propagation can get
past some of today’s technical defenses. We suggest
that while there is some hope of improving techni-
cal defenses, including correlation techniques, another
promising avenue may be to increase the non-technical
defense capacity in terms of coordinated and collabora-
tive incident response and investigation.

Acknowledgements

The authors would like to thank Brian Eckman, Matt
Wilson, Joe Stewart, John Hernandez, Adam Turoff,
Michael Collins, Phil Groce, Ross Kinder, and others
at CERT, the University of Washington, and elsewhere
for their support, assistance, and valuable discussions.

References

[1] R. Bhagwan, S. Savage, and G. Voelker. Understanding
availability. In Proc. of the 2nd International Workshop

7



on Peer-to-Peer Systems, LNCS 2735. Springer Verlag,
February 2003.

[2] E. Cooke, F. Jahanian, and D. McPherson. The Zom-
bie Roundup: Understanding, Detecting, and Disrupt-
ing Botnets. In SRUTI05: Proceedings of the Steps to
Reducing Unwanted Traffic on the Internet Workshop,
2005.

[3] D. Dittrich and S. Dietrich. Discovery techniques for
P2P botnets. Technical Report CS 2008-4, Stevens In-
stitute of Technology, September 2008.

[4] D. Dittrich and S. Dietrich. New directions in P2P mal-
ware. In Proceedings of the 2008 IEEE Sarnoff Sympo-
sium, page 5, Princeton, New Jersey, USA, April 2008.

[5] D. Dittrich and S. Dietrich. Technical Report CS 2008-3.
Stevens Institute of Technology, June 2008.

[6] D. Fischer. Storm, Nugache lead dangerous
new botnet barrage. SearchSecurity.com, De-
cember 2007. http://searchsecurity.
techtarget.com/news/article/0,289142,
sid14 gci1286808,00.html.

[7] G. Gu, R. Perdisci, J. Zhang, and W. Lee. BotMiner:
Clustering analysis of network traffic for protocol- and
structure-independent botnet detection. In Proceedings
of the 17th USENIX Security Symposium (Security’08),
July 2008.

[8] T. Holz. A short visit to the bot zoo. IEEE Security &
Privacy Magazine, 3(3):76–79, May-June 2005.

[9] T. Holz, M. Steiner, F. Dahl, E. W. Biersack, and F. Freil-
ing. Measurements and mitigation of peer-to-peer-based
botnets: a case study on storm worm. In LEET’08: First
USENIX Workshop on Large-Scale Exploits and Emer-
gent Threats, April 15, 2008, San Francisco, CA, USA,
April 2008.

[10] B. Kaliski. PKCS #1: RSA Encryption version 1.5. RFC
2313, Internet Engineering Task Force, 1998.

[11] E. Messmer. Nugache worm kicking up a Storm, January
2008. http://www.networkworld.com/news/
2008/010708-nugache-worm.html.

[12] J. Miller. Cheyenne teen pleads guilty to
computer crime. Star-Tribune, August 2008.
http://www.casperstartribune.net/
articles/2008/08/16/news/casper/
2c6fb0ecfe2ddf6c872574a700057d26.txt.

[13] S. Nagaraja and R. Anderson. The topology of covert
conflict. Technical Report UCAM-CL-TR-637, Univer-
sity of Cambridge, July 2005.

[14] J. Nazario. Nugache: TCP port 8 Bot, May
2006. http://asert.arbornetworks.com/
2006/05/nugache-tcp-port-8-bot/.

[15] J. Paz. Fake Media Player Movie -
TROJ DLOADER.IBZ, December 2006.
http://blog.trendmicro.com/
fake-media-player-movie-troj-dloaderibz/.

[16] P. Porras, H. Saidi, and V. Yegneswaran. A Multi-
perspective Analysis of the Storm (Peacomm) Worm.
Technical report, Computer Science Laboratory, SRI In-
ternational, 2007.

[17] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J.
de Groot, and E. Lear. Address allocation for private
internets. RFC 1918, Internet Engineering Task Force,
1996.

[18] R. Schoof and R. Koning. Detecting peer-
to-peer botnets, February 2007. http:
//staff.science.uva.nl/∼delaat/
sne-2006-2007/p17/report.pdf.

[19] M. Steggink and I. Idziejcak. Detection of
peer-to-peer botnets, February 2008. http:
//staff.science.uva.nl/∼delaat/
sne-2007-2008/p22/presentation.pdf.

[20] S. Stover, D. Dittrich, J. Hernandez, and S. Dietrich.
Analysis of the Storm and Nugache Trojans: P2P is here.
In USENIX ;login: vol. 32, no. 6, December 2007.

[21] The Honeynet Project. Honeynet Definitions, Re-
quirements, and Standards version 1.6.0, 2004.
http://www.honeynet.org/alliance/
requirements.html.

[22] The Honeynet Project. Honeywall, 2005. http://
www.honeynet.org/papers/cdrom/.

[23] Trend Micro. Taxonomy of Botnet Threats, November
2006.

[24] Trend Micro. TROJ DLOADER.IBZ, December
2006. http://www.trendmicro.com/vinfo/
virusencyclo/default5.asp?VName=TROJ\
DLOADER.IBZ.

[25] Trend Micro. WORM NUGACHE.G. http://www.
trendmicro.com/vinfo/virusencyclo/
default5.asp?VName=WORM\ NUGACHE.G,
December 2006.

[26] Trend Micro. WORM NUGACHE.G (Japanese
web site), December 2006. http://blog.
trendmicro.co.jp/archives/1053.

[27] United States Department of Justice. Wyoming man
charged with infecting thousands of computers with ‘tro-
jan’ that he used to commit fraud. Release No. 08-090,
June 2008.

[28] R. Vogt, J. Aycock, and J. Michael J. Jacobson. Army
of botnets. In Proceedings of the 2007 Network and
Distributed System Security Symposium (NDSS 2007),
pages 111–123, February 2007.

[29] P. Wang, S. Sparks, and C. C. Zou. An advanced hy-
brid peer-to-peer botnet. In HotBots’07: Proceedings of
the first conference on First Workshop on Hot Topics in
Understanding Botnets, pages 2–2, Berkeley, CA, USA,
2007. USENIX Association.

8


