Analyzing Distributed Denial of Service Tools: The Shaft Case

Sven Dietrich
NASA GSFC/Raytheon ITSS
spock@netsec.gsfc.nasa.gov

Neil Long
Oxford University
neil.long@computing-services.oxford.ac.uk

David Dittrich
University of Washington
dittrich@cac.washington.edu

December 8, 2000
Overview

- Terminology
- Evolution of DoS into DDoS
- DDoS impact overview
- Shaft
- Defensive measures
- Summary
- Future trends
Terminology

- Denial of Service
 - Overwhelming the victim to the point of unresponsiveness to the legitimate user
 - By carefully constructing a sequence of packets with certain characteristics, an intruder can cause vulnerable systems to crash, hang, or behave in unpredictable ways
Evolution of DoS

- Simple DoS
- Smurf DoS
- Coordinated DoS
- Distributed DoS
Simple Denial of Service (DoS)

- Point to point, direct phenomenon
- Examples:
 - TCP SYN flooding
 - ICMP flooding
 - UDP flooding
 - Ping of Death

Attacker

Victim
Victim
Victim
Smurf-type Denial of Service

- Indirect phenomenon
- Requires help from a (misconfigured) third party
Coordinated Denial of Service

- Collaborative phenomenon
- Requires help from and coordination with multiple parties
Distributed Denial of Service (DDoS)

- Multi-source, multi-target phenomenon
- Requires lots of “agents” harvested from the net pool
DDoS 101

- One single thread, attacker to victim
- Handler: the program that controls the agents
- Agent: performing the actual DoS attack on behalf of the handler
- Command sets for attacker-handler and handler-agent communications
So what’s the big deal with DDoS?

- Problem recognized at CERT DSIT workshop (November 1999)
- Higher complexity
- Greater distance from victim to attacker
 - Traceback problem
- Offensive capabilities of a “single attacker” enhanced
 - Attacks can be sized accordingly (e.g. 25, 250, 2500, 25000 agents), dynamically, if necessary
- Attacks are quite effective (U of MN - August 1999, February 2000 events, etc.)
DDoS impacts

- Packet payloads
- TCP SYN packets
 - Fill state tables, buffers
- UDP packets
 - Bandwidth consumption
- ICMP packets
 - Ping floods, malformed packets, oversized packets
- TCP options, fragments, etc.
- IP Spoofing
 - None whatsoever
 - Spoofing at subnet boundaries
 - Full spoofing
The network level

- Determining whether you are under attack or attacking someone else
 - Anomaly detection
 - Performance
 - Gateways
 - Uplinks/ISP(s)
- More signs
 - Network failure
 - Complaints
The host level

- Host performance impacted
- Agent/handler binaries sometimes hidden
 - by rootkits, at times for months!!!
 - Trying to ‘blend’, by naming schemes:
 1. /usr/bin/rpc.listen
 1. /usr/bin/rpc.bind
 1. httpd
 1. idle.so
- Need for good forensics
 - find_ddos [NIPC]
 - TCT [Venema, Farmer]
 - lsof
Where does Shaft fit in?

- Trinoo [Dittrich, 1999]
- Tribe Flood Network [Dittrich, 1999]
- Stacheldraht [Dittrich, 1999]
- TFN2K [Barlow, Thrower, 2000]
- **Shaft** [Dietrich, Long, Dittrich, LISA 2000]
- Mstream [Dittrich, Weaver, Dietrich, Long, 2000] [CERT2000]
- Stacheldraht 1.666 [Dittrich, Dietrich, Long, unpublished] [NIPC2000]
- Omega [Dittrich, Weaver, Long, Dietrich, unpublished]
- Trinity, Entitee, Plague, myServer, ...
Shaft analysis goals

Know thy enemy
The Shaft incident

- Data shown as seen by an agent network
- Observed data 28 November 1999 - 4 December 1999
 - Data sampling rather coarse
 - Various tools: Argus, NeTraMet, tcpdump
- The handler
 - Taken offline in March 2000 (!)
 - Online since ???
Shaft floods

Initial compromise/testing phase 2100-2300
More Shaft floods

Testing phase 0200-0600
Multi-target Shaft flood

Time (approx minutes)

Packet flows

- Target A
- Target B
- Target C
- Target D
- Target E
- Target F
- Target G
- Target H
- Target I
Challenges in the Shaft analysis

- Reconstructing the tool command set
- Passwords for commands encrypted with Caesar cipher
- Access passwords were super-encrypted
 - String in binary looked like crypt() string, e.g.

 mk-Nw/TTjr4n1

 - But ‘-’ is not in the 64-character output set of crypt()!

 Shifting the string by 1 character gives

 nl.Ox0UUks5o2

 which is a valid crypt() string

 - Decrypts to ‘lisa2000’
Network defenses

- Network analysis tools overwhelmed or confused
 - Accuracy of data, dropped packets, better log raw packets
 - Differentiate flood and control traffic

- Impact reduction
 - Traffic limiting, redundant pathways, deflection

- Source of IP packets
 - Need to trace spoofed packets to find agents
 - Traceback efforts
 - ICMP Traceback [Bellovin 2000]
 - Packet marking scheme [Savage et al. 2000]
 - Advanced packet marking scheme [Song, Perrig, 2000]
 - Tracing anonymous packets [Cheswick, Burch, 2000]

- Guidelines in CERT DSIT Report
Host defenses

- Protecting the host as a target
 - Host hardening against network attack [Schuba et al., Oakland 1997]
 - Kernel tuning
- Protecting the host as a source
 - Host hardening against compromise
 - Integrity checking
 - Removing host offensiveness [Rosti et al, ACSAC 2000]
What can we do?

- Commercial solutions?
 - Bigger, better IDS?
- Anomaly detection
 - Free tools work fine, but difficult to maintain
 - Must know what is ‘normal’
- Check networks for known DDoS tools
- Coordinate efforts
 - Interdisciplinary
 - National/international
- Forensics
 - Recover as much as possible
Summary

- The DDoS problem is not going away
 - Political/cyberwarfare consequences
 - No silver bullet
 - Even crude, buggy DDoS code has tremendous impact
 - Trinoo

- Education is the key
 - The earlier this gets recognized/stopped, the better

- Tracking/tracing
 - Need is obvious
 - Legal and privacy issues
Future trends

- **Sophistication**
 - Hybrid tools
 - Anonymization
 - Encryption of communication channels
 - Use of “non-removable” channels
 - Hidden channels
 - Combination/probabilistic attacks
 - “whack-a-mole” attacks [Longstaff, NISSC 2000]

- **Simplification**
 - Disposable, one-time use DDoS tools
 - Fire and forget
Acknowledgements & Contact info

- Special thanks to:
 - CERT/CC
 - FIRST
 - NASIRC

- Contact info:
 - http://netsec.gsfc.nasa.gov/~spock/
 - http://staff.washington.edu/dittrich/