
New Directions in Peer-to-Peer Malware

David Dittrich
University of Washington

dittrich@u.washington.edu

Sven Dietrich
Stevens Institute of Technology

spock@cs.stevens.edu

1 Introduction

Intruders are constantly changing, improving, and ex-
tending the capabilities of their malicious software
(malware). Not only have their tools evolved from
single-purpose programs run manually to attack from
one host to one other host, but have now evolved into
feature-rich distributed peer-to-peer networks of bots
(botnets).

In this paper, we will examine in general the mul-
tiple generations of malware leading up to the lat-
ter category of botnets, and in specific the failures
and successes in the category of hybrid/P2P bot-
nets. We will include some thoughts on the impli-
cations for telecommunications providers in an age
where anti-virus, anti-spam, intrusion prevention sys-
tems, and firewalls individually may to prevent the
compromise of internal enterprise or customer sys-
tems, and how reaction capabilities must adapt to
the emerging threat environment. The convergence
of features in today’s “smart phones” will bring this
threat to hand-held devices in the same manner as
historically has been seen in desktop and portable
computers.

Over the last 5 years, P2P botnets have emerged
and reached the maturity to be used for their mali-
cious purpose over larger scale in size and time. This
article extends the work in [3] to focus more on the
P2P aspects of command and control channels in mal-
ware.

2 Generational Comparison of
Denial of Service Attack Tools

The word attack can be intrepreted many ways, and
is often the source of much confusion when trying
to determine a defensive response. For example, the
response to a theft of intellectual property or financial
data is far different than the response to a denial
of service attack. Likewise, there are two different

preventative strategies, and two different detection
strategies.

To simplify the analysis of the generational differ-
ences in malware, we will focus only on those malware
artifacts that implement Denial of Service (DoS) at-
tacks [11] intended to cause one or more targetted
systems or services to crash, lock up, or otherwise
be rendered unresponsive to normal, legitimate re-
quests. While it is obvious that some of the examples
included here are not intended solely for DoS attacks,
they all include DoS capability.

There are at least six generations of DoS-related
attack tools that can be seen over time. These gen-
erations are depicted in the timeline in Figure 1.

They break down into two distinct sets: Single-
threaded tools and distributed tools. Within these
sets, there is a progression towards more and more
powerful tools, with the next generation being a tran-
sition to a higher-level of efficiency and power than
the previous generation.1

In ascending order, the six generations seen to
date follow in the next subsections.

2.1 Single-threaded, single-attack

These programs are generally small, simple, single-
purpose, and run in a single process or thread. Many
were written as proof-of-concept exploits that illus-
trate a vulnerability, and in many cases serve as a
means of verifying whether a vulnerability is present
or not, and even allowing testing of fixes and patches.
In that sense, they serve a positive purpose. In the
hands of someone with malicious intent, however, they
can be used to cause damage. 2 SYN flooding (to
prevent systems from accepting any more legitimate
connections), fragmented packet attacks that crash

1There are other attributes of the tools listed in each of
the generations that cause an overlap. These overlaps will be
pointed out in the descriptions of the generations and tools.

2For an analysis of positive vs. negative aspects of exploits,
the concept of full disclosure, etc., see Section 6.7.2 of [11]

1



(a) Timeline to 2001

(b) Timeline from 2002

Figure 1: Malware timelines

Windows TCP/IP stacks, and malformed packet at-
tacks that crash routers, were very popular in the late
1990s.

2.2 Single-threaded, multiple-attack

Trying to choose the right exploit to perform a DoS
attack against a victim who may use a system that is
patched for the chosen exploit, or may have greater
available bandwidth, can be difficult. To increase
the chances of successfully denying service to the in-
tended target, some attackers took to using scripts
or C programs that run a large number of single-
threaded/single-attack tools in turn. Two popular
programs that bundled a dozen or more exploits were
targa.c and rape. Since these programs only increase

the possibility of finding a workable exploit, but do
nothing to increase the available bandwidth for a
flooding attack, someone with a fully patched sys-
tem on a fast network connection would always win
the battle. More firepower was needed, and so other
means of involving a larger number of hosts in an
attack were required.

2.3 Single-threaded, reflected/amplified

A vulnerability was found involving ICMP Echo Re-
quest packets with forged source addresses (of the
intended victim) that were directed at the broadcast
address of subnets with a large number of hosts that
would respond to the request. (This is known as a di-
rected incoming broadcast request flood.) The most

2



popular form of this attack was known as a Smurf at-
tack 3 For each inbound ICMP Echo Request would
come a multiple number of replies, resulting in an
amplification effect, as well as being reflected off the
hosts in the vulnerable network (making traceback
harder.) Paxson described a large number of such at-
tacks that would reflect and/or amplify attack pack-
ets. [16] Another related form of reflected attack was
described in the analysis of the Power bot, called
an unwitting agent attack because it does not re-
quire any malicious software, but rather exploits a
remotely accessible vulnerability to run a standard
command on the vulnerable host that causes it to
attack the intended target. (E.g., The script mr-
float used the Unicode directory traversal hole in Mi-
crosoft’s IIS web server to run PING.EXE, sending a
series of ICMP Echo Request packets to the victim
site. It was used on May 4, 2001, to take down the
www.whitehouse.gov web site. The Power bot, two
months later, used this same vulnerability for both
propagation of the bot itself and for Distributed De-
nial of Service (DDoS) attacks. Power would scan for
vulnerable hosts, add them to a list it kept locally,
and either use the list for unwitting agent DDoS at-
tacks or to upload and install a copy of the Power
bot.)

2.4 Distributed, handler-agent

A series of client/server applications, all using custom
protocols and source code bases, were created for one
purpose only: to perform DDoS attacks. The mo-
tivation for these programs (per an email exchange
with one of the authors) was for a small group who
controlled a very large number of compromised hosts
to fight back against a much larger group who were
using single-threaded, single-attack programs in a co-
ordinated (yet manual) fashion. The larger groups
would coordinate the attack using IRC, informing
the group which IP addresses to attack. The smaller
group, capable of controlling hundreds of computers
per person (in an automated fashion) were able to
out-gun their opponents by one to perhaps two or-
ders of magnitude. The primary limitations of this
generation of attack tools were the necessity to cre-
ate a unique command and control protocol, limitions
in the ability to scale the attack network due to finite
open file handle tables in the Unix systems used for
these attacks, and weaknesses in the programs them-

3Name for the blue creatures created by Belgian cartoonist
Peyo, see http://www.smurf.com/

selves that allowed a defender (or rival) to scan for
them on the network.

2.5 Distributed, central command and
control

Fights between individuals and groups communicat-
ing on IRC was the primary motivation for creating
the earlier generations of attack programs. Because
of this, and the fact that bots were already being used
by these attackers for other purposes, it made sense
to create DDoS bots that used standard IRC for com-
mand and control, allowing the attacker to use one
front end – their favorite IRC client – for everything.
IRC networks were also already tuned and resourced
to handle a huge number of users world-wide.

Remote Access Trojans, and even the PrettyPark
trojan, were made to use IRC for remote control, as
were bots that served up pirated audio, video, game,
and commercial software files (known as XDCC bots.)
Single-purpose programs like kaiten.c and knight.c
performed primarily DDoS functions, and later pro-
grams such as Agobot/Phatbot integrated dozens of
functions in a single program.

2.6 Distributed, hybrid

The first public attack involving the use of malware
with P2P capabilities was the Linux Slapper Worm in
2002 [7]. While the program claimed to handle over
16 million simultaneous connections, it never got to
anywhere near that size (due mostly to the noise of
worm propagation activity.) IRC bots of the previous
generation, such as Agobot (with a custom P2P pro-
tocol that appears to have not been successful, and
was abandoned) and Phatbot (which used the open
source WASTE P2P source code, but was likewise
abandoned), were early attempts to move to P2P.
More recent examples of P2P include Sinit in 2003,
[4] Zindos in 2004, [19] Nugache4 in 2005, Spamthru
in 2006, [18] and the mis-named Storm worm5 in
2007.

4While Nugache was discussed in private circles as early as
October 2005, there is no public discussion of Nugache until
April 2006.

5Storm, or Peacomm as it is alternately known, is actually
a trojan, not a worm.

3



2.7 Specific Distributed System Net-
work Structures

The evolution of command and control channels over
the last few years [3] has taken us from simple hi-
erarchical structures (handler/agent) to more struc-
tured and centralized command and control struc-
tures (such as IRC channels and botnets), to the
concept of a decentralized structure such as P2P net-
works.

2.7.1 Peer to Peer Networks

The use of Peer-to-peer mechanisms for command
and control introduce an entirely new topology and
communication flow than previous models. [3]

In the P2P model, all attack agents form a ran-
domly connected network, where no single host or
network of hosts are responsible for central commu-
nication. Unlike either of the two previous models,
the P2P model does not need any central host or
hosts responsible for command and control, or even
for joining the P2P network.6

Commands are retransmitted through the P2P
network a limited number of times, enough for all
peers to see and act on the command. The attacker
is able to connect to any of the peers using a spe-
cial client program and initiate commands, which are
then relayed throughout the P2P network. Responses
are similarly routed through the network until they
reach the intended recipient (or are dropped because
they have exceeded a “time-to-live” threshold.)

Use of P2P command and control in malware was
envisioned as early as 2000 [23]. As shown in Sec-
tion 2.6, attempts to implement P2P mechanisms
achieved only limited success until 2006. The most
successful of the P2P-capable malware networks were
Nugache and Storm. While Storm used P2P (and
Fast Flux DNS[9]) for rallying bots to its central com-
mand and control servers, only Nugache used its P2P
channel as the primary means of command and con-
trol. [20]

After the first publications to mention the ad-
vent of P2P-capable malware in 2005, [1, 6] attention
within the security industry and research community
began to shift. [12, 10] The Congressional Research
Service has even looked at the subject in detail, with
an eye towards policy implications for Congress. [22]

6The SpamThru Trojan [18], which also uses a P2P model
for some command and control, also employs a central server
for its spam templates. This is a hybrid of the IRC and P2P
models.

There are many different models for P2P networks
that result in different network graph topologies, [2]
as well as different strategies for attacking the result-
ing networks. [13]

3 Conclusion

Starting around the time of the first DDoS attacks on
the root DNS servers in 2002, central command and
control IRC-based botnets became the principle sub-
ject of research and investigation in academic, com-
mercial, and legal circles. The principle means of
fighting botnets is to focus on identifying and remov-
ing command and control channels on IRC servers, or
take down the rogue IRC servers themselves. [17, 1,
5, 8] These efforts haven proven effective against the
typical clear-text bots using standard IRC protocols,
and law enforcement activities have resulted in many
successful prosecutions. [21, 14, 15])

Command and control traffic that does not utilize
a single IRC channel and is heavily encrypted, signifi-
cantly increases the difficulty and time it takes for the
entire attack network can be identified and mitigated.
It is clear that attackers have been trying for years to
move away from clear text IRC-based command and
control, and are achieving some success using pure-
P2P malware networks over the last 5 or so years.
This trend is finally being recognized in the research
community, and it will only be a matter of time be-
fore a mass-migration away from the easy to mitigate
IRC-based botnets occurs. The long-running Storm
spam deluge is further evidence of what will face us
in the near future.

References

[1] Evan Cooke, Farnam Jahanian, and Danny McPher-
son. The Zombie Roundup: Understanding, Detect-
ing, and Disrupting Botnets. In SRUTI05: Proceed-
ings of the Steps to Reducing Unwanted Traffic on the
Internet Workshop, 2005. http://www.eecs.umich.

edu/~emcooke/pubs/botnets-sruti05.pdf.

[2] David Dagon, Guofei Gu, Chris Lee, and Wenke Lee.
A taxonomy of botnet structures. In Proceedings of
the 23 Annual Computer Security Applications Con-
ference (ACSAC’07), December 2007.

[3] Dave Dittrich and Sven Dietrich. Command and con-
trol structures in malware: From Handler/Agent to
P2P. In USENIX ;login: vol. 32, no. 6, Decem-
ber 2007. http://www.usenix.org/publications/

login/2007-12/pdfs/dittrich.pdf.

4



[4] Threat Intelligence Group. Sinit p2p trojan analysis.
http://www.lurhq.com/sinit.html.

[5] Guofei Gu, Junjie Zhang, and Wenke Lee. BotSniffer:
Detecting botnet command and control channels in
network traffic. In Proceedings of the 15th Annual
Network and Distributed System Security Symposium
(NDSS’08), February 2008.

[6] Thorsten Holz. A short visit to the bot zoo. IEEE
Security & Privacy Magazine, 3(3):76–79, May-June
2005. http://lufgi4.informatik.rwth-aachen.

de/publications-pdfs/13.pdf.

[7] Honeynet Project. Scan of the Month 25: Slap-
per Worm .unlock.c source file, 2002. http://www.

honeynet.org/scans/scan25/.unlock.nl.c.

[8] The Honeynet Project. Tracking Botnets, 2005.
http://www.honeynet.org/papers/bots/.

[9] The Honeynet Project. Fast-Flux Service Net-
works, 2007. http://www.honeynet.org/papers/

ff/fast-flux.html.

[10] Trend Micro. Taxonomy of Botnet Threats, Novem-
ber 2006. http://us.trendmicro.com/imperia/

md/content/us/pdf/threats/securitylibrary/

botnettaxonomywhitepapernovember2006.pdf.

[11] Jelena Mirković, Sven Dietrich, David Dittrich, and
Peter Reiher. Internet Denial of Service: Attack and
Defense Mechanisms. Prentice Hall PTR, 2004.

[12] Lysa Myers. Aim for bot coordination. http:

//www.mcafee.com/us/local_content/white_

papers/threat_center/wp_vb2006_myers.pdf.

[13] Shishir Nagaraja and Ross Anderson. The
topology of covert conflict. Technical Report
UCAM-CL-TR-637, University of Cambridge, July
2005. http://www.cl.cam.ac.uk/techreports/

UCAM-CL-TR-637.pdf.

[14] Department of Justice. Criminal Complaint: United
States of America v. Paul G. Ashley, Jonathan David
Hall, Joshua James Schichtel, Richard Roby, and Lee
Graham Walkrer, 2004. http://www.reverse.net/

operationcyberslam.pdf.

[15] Department of Justice. Over one million potential
victims of botnet cyber crime, 2007. http://www.

ic3.gov/media/initiatives/BotRoast.pdf.

[16] Vern Paxson. An Analysis of Using Reflec-
tors for Distributed Denial-of-Service Attacks.
http://www.icir.org/vern/papers/reflectors.

CCR.01/reflectors.html.

[17] Ryan Naraine. Botnet Hunters Search for
’Command and Control’ Servers. eWeek.com,
2005. http://www.eweek.com/article2/0,1759,

1829347,00.asp.

[18] SecureWorks. SpamThru trojan analysis, Octo-
ber 2006. http://www.secureworks.com/analysis/
spamthru/.

[19] Joe Stewart. Zindos worm analysis, July
2004. http://www.secureworks.com/research/

threats/zindos.

[20] Sam Stover, Dave Dittrich, John Hernandez, and
Sven Dietrich. Analysis of the Storm and Nugache
Trojans: P2P is here. In USENIX ;login: vol. 32,
no. 6, December 2007. http://www.usenix.org/

publications/login/2007-12/pdfs/stover.pdf.

[21] United States Department of Justice. U.S. v.
James Jeanson Ancheta. http://news.findlaw.

com/hdocs/docs/cyberlaw/usanchetaind.pdf.

[22] Clay Wilson. Botnets, Cybercrime, and Cyberterror-
ism: Vulnerabilities and Policy Issues for Congress,
November 2007. http://fas.org/sgp/crs/terror/

RL32114.pdf.

[23] Michal Zalewski. “i don’t think i really love
you,” or writting [sic] internet worms for fun
and profit. http://seclists.org/lists/vuln-dev/
2000/May/0159.html.

5


