
1

Web Programming

Lecture 9 – Introduction to Ruby

Origins of Ruby

• Ruby was designed by Yukihiro Matsumoto (“Matz”)

and released in 1996.

• It was designed to replace Perl and Python, which

Matz considered inadequate.

• It grew quickly in Japan and then spread around the

world.

• Its expansion was a result of the increasing popularity

of Rails, a Web development framework that was

written in Ruby and that uses Ruby.

2

Uses of Ruby

• Because Ruby is implemented by pure

interpretation, it’s easy to use.

• Example
irb(main):001:0> puts "hello, world"

hello, world

=> nil

• Ruby uses regular expressions and implicit

variables like Perl, objects like JavaScript but

is quite different from these languages.

Scalar Types in Ruby

• Ruby has three categories of data types:

– Scalars – either numerics or character strings.

– Arrays – that uses dynamic sizing

– Hashes – associative arrays, similar to PHP.

• Everything in Ruby is an object

3

Numeric and String Literals

• All numeric data types are derived from the
base class Numeric, has two derived classes

Float and Integer.

Integer Literals

• Integer has two derived classes:

– FixNum - fits the range of a machine word (usually

32 bits).

– BigNum – numbers outside the range of FixNum. (if

an operation on BigNum produces a smaller value,

it will be coerced into FixNum).

• Ruby ignores underscores in integer literals so

they can be more readable.

– 1_234_567_890 is more readable than
1234567890

4

Float Literals

• A numeric literal with either an embedded

decimal point or an exponent following it is a
Float object.

• Float objects are stored as double-precision

floating point numbers.

• Decimal points must have a digit on both sides

of it.

String Literals

• All string literals are String objects, which

are sequences of bytes that represent

characters.

• String objects are either single-quoted or

double-quoted.

5

Single-Quoted String Literals

• Single quoted strings cannot have escape sequences.

• Examples
– 'I\’ll meet you at O\’Malleys'

the inner apostrophes are included correctly.

– 'Some apples are red, \n some are green.'

contains a backslash followed by n (not a newline).

Delimiting Single-Quoted String Literals

• You can use a different delimiter by beginning

the string with a q followed by another

character. It will even match up braces,

brackets or parentheses.

• Examples

q$Don’t you think she’s pretty$

q<don’t you think she’s pretty>

6

Double-Quoted String Literals

• Double-quoted strings can contain the special

characters specified by escape sequences. And the

values of variable names can be substituted into the

string.

• Example

– “Runs \t Hits \t Errors” will include the expected

tabs

• For a different delimited for double-quotes strings,

begin the string with Q:
– Q@”Why not learn Ruby”, he asked.@

Naming Local Variables

• A local variable is not a class nor an instance

variable. It belong to the block, method

definition, etc. in which it is located.

• Local variable names begin with a lowercase

letter or an underscore, followed by letters,

digits or underscores. While variable names

are case-sensitive, the convention is not to use

uppercase letters.

7

Using Variables In Strings

• The value associated with a local variable can be

inserted in a double-quoted string:
• "Tuesday’s high temperature was #{tue_high} "

is printed as
"Tuesday’s high temperature was 83"

• Everything in Ruby is an object, so we are really

working with their references, which are typeless. As

a result, all variables are implicitly declared (how we

use them determines their type).

Constants in Ruby

• Constants in Ruby begin with an uppercase

letter.

• A constant is created by assigning it a value,

which can be any constant expression.

– Constants in Ruby can be assigned new values, but

there will be a warning message.

8

Predefined Variables

• Ruby has predefined variables (like Perl),

which consist of $ followed by a special

character.

– Examples - $_, $^, $\

Numerical Operators

Operator Associativity

** Right

Unary +, - Right

*, /, % Left

Binary +, - Left

9

Assignment Statements

• Assignment statements are like those in C-

based languages.

• Ruby includes the Math module, which has

basic trigonometric and transcendental

functions, including

Math.cos (cosine) Math.sin (sine)

Math.log(logarithm) Math.sqrt (square root)

all of these return a Float value.

Interactive Ruby (irb)

irb(main):001:0> 17*3

=> 51

irb(main):002:0> conf.prompt_i = ">>"

=> ">>"

>>

10

String Methods

• Ruby’s String class has over 75 methods,

many of which can be used as if they were

operators.

• These include:

– + - concatenation

– << append

• Example
>>"Happy" + " " + "Holidays!"

=> "Happy Holidays!"

>>

Assigning String Values

• << appends a string to the right of another string.
irb(main):001:0> mystr = "G'day, "

=> "G'day, "

irb(main):002:0> mystr << "mate"

=> "G'day, mate"

irb(main):003:0>

• This created the string literal and assigned its
reference to mystr.

11

Assigning String Values (continued)

irb(main):003:0> mystr = "Wow!"

=> "Wow!"

irb(main):004:0> yourstr = mystr

=> "Wow!"

irb(main):005:0> yourstr

=> "Wow!"

irb(main):006:0>

• Ruby assigned yourstr a copy of the same reference

that mystr held.

Assigning String Values (continued)

irb(main):001:0> mystr = "Wow!"

=> "Wow!"

irb(main):002:0> yourstr = mystr

=> "Wow!"

irb(main):003:0> mystr = "What?"

=> "What?"

irb(main):004:0> yourstr

=> "Wow!"

irb(main):005:0>

• After the assignment, yourstr has the same reference as

mystr. But when mystr is assigned a different string literal,

Ruby sets aside another memory location for the new literal
and that is the reference that mystr now holds.

12

Assigning String Values (continued)

• If you want to change the value in the location that mystr

references but have mystr reference the same location in

memory, use the replace method:
irb(main):001:0> mystr = "Wow!"

=> "Wow!"

irb(main):002:0> yourstr = mystr

=> "Wow!"

irb(main):003:0> mystr.replace("Golly!")

=> "Golly!"

irb(main):004:0> mystr

=> "Golly!"

irb(main):005:0> yourstr

=> "Golly!"

irb(main):006:0>

Assigning String Values (continued)

• You can also use += to perform the append

operation.
irb(main):001:0> mystr = "check"

=> "check"

irb(main):002:0> mystr += "mate"

=> "checkmate"

irb(main):003:0>

13

Commonly Used String Methods
Method Action

capitalize Converts the first letter to uppercase and the rest of the

letters to lowercase

chop Removes the last character

chomp Removes a newline from the right end if there is one

upcase Converts all of the lowercase letters in the object to

uppercase

downcase Converts all of the uppercase letters in the objects to

lowercase

strip Removes the spaces on both ends

lstrip Removes the spaces on the left end

rstrip Removes the spaces on the right end

reverse Reverses the characters of the string

swapcase Converts all uppercase letters to lowercase and all

lowercase letters to uppercase

Commonly Used String Methods

• The methods mentioned before produce new

string and do NOT modify the given string in

place.

• If you wish to modify the string instead of

producing a new string, place a ! at the end of

the method name. Such methods are called

bang methods or mutator methods.

14

Mutator Methods – An Example

irb(main):001:0> str = "Frank"

=> "Frank"

irb(main):002:0> str.upcase

=> "FRANK"

irb(main):003:0> str

=> "Frank"

irb(main):004:0> str.upcase!

=> "FRANK"

irb(main):005:0> str

=> "FRANK"

irb(main):006:0>

Ruby Strings as Arrays

• Ruby strings can be indexed, in a manner similar to
arrays, with indices starting at 0.

• The brackets serve as an accessor for a single

character, returned as an ASCII value. If you wish
the character, use the chr method.

• More recent implementations of Ruby may return the

character instead of ASCII value for the [] operator.

15

Ruby Strings as Arrays – An Example

irb(main):006:0> str = "Shelley"

=> "Shelley"

irb(main):007:0> str[1]

=> "h"

irb(main):008:0> str[1].chr

=> "h"

Ruby Strings and Substring

• A multicharacter substring can be accessed by

specifying the starting character and number of

characters in the substring:

irb(main):009:0> str = "Shelley"

=> "Shelley"

irb(main):010:0> str[2,4]

=> "elle"

irb(main):011:0>

16

Changing a String With a Substring

• The []= operator can be used to specify

characters of a substring and to what they are

be changed:
irb(main):013:0> str = "Donald"

=> "Donald"

irb(main):014:0> str[3,3] = "nie"

=> "nie"

irb(main):015:0> str

=> "Donnie"

irb(main):016:0>

Comparing Strings for Equality

• == is used to see if two string have the same content.

• equal? tests to see if both are the same object

• Example
irb(main):016:0> "snowstorm" == "snowstorm"

=> true

irb(main):017:0> "snowie" == "snowy"

=> false

irb(main):018:0> "snowstorm".equal?("snowstorm")

=> false

irb(main):019:0>

17

Comparing Numeric Values

• The == operator determines if the values are

equivalent regardless of type.

• The eql? operator returns true if the types and

values match.
irb(main):023:0> 7 == 7.0

=> true

irb(main):024:0> 7.eql?(7.0)

=> false

irb(main):025:0>

<=>

• The <=> operator compares two different

values and returns -1 if the second operator is

greater than the first, 0 if they are equal and 1

if the first is greater than the second.

18

<=> - Examples

irb(main):025:0> 7 <=> 5

=> 1

irb(main):026:0> "grape" <=> "grape"

=> 0

irb(main):027:0> "grape" <=> "apple"

=> 1

irb(main):030:0> "apple" <=> "prune"

=> -1

irb(main):031:0>

Repetition Operator (*)

• The repetition operator (*) takes a string as its

left operand a numeric expression as its right

operand and replicates the left operand as

many times as indicated by the right operand.

• Example
irb(main):031:0> "More!" * 3

=> "More!More!More!"

irb(main):032:0>

19

Screen Output

• Output is directed to the screen using the puts method

(or operator).

• The operand for puts is a string literal with a newline

implicitly appended to the end.

• A variable’s value can be included in the string by
writing #{variableName}

• print works in the same way except with the

included newline.

• sprintf works as it does in C, allowing for

formatted output.

Screen Output – An Example

irb(main):032:0> name = "Pudgy"

=> "Pudgy"

irb(main):033:0> puts "My name is #{name}"

My name is Pudgy

=> nil

irb(main):034:0> print "My name is #{name}"

My name is Pudgy=> nil

irb(main):035:0> total = 10

=> 10

irb(main):036:0> str = sprintf("%5.2f", total)

=> "10.00"

irb(main):037:0>

20

Keyboard Input

• The gets method gets a line of input from the

keyboard. The retrieved line includes the newline

character. You can get rid of it with chomp:
irb(main):037:0> name = gets

apple

=> "apple\n"

irb(main):038:0> name = name.chomp

=> "apple"

irb(main):039:0> name = gets.chomp

apple

=> "apple"

irb(main):040:0>

Keyboard Input (continued)

• Since the input is taken to be a string, it needs

to be converted if its numeric:
irb(main):042:0> age = gets.to_i

29

=> 29

irb(main):043:0> age = gets.to_f

28.9

=> 28.9

irb(main):044:0>

21

quadeval.rb

#quadeval.rb - A simple Ruby program

Input: Four numbers, representing the values of

a, b, c, and x

output: The value of the expression

a*x**2 _ b*x + c

Get input

puts "please input the value of a"

a = gets.to_i

puts "please input the value of b"

b = gets.to_i

puts "please input the value of c"

c = gets.to_i

compute and display the result

result = a * x ** 2 + b * x + c

puts "The value of the expression is #{result}"

22

Running quadeval.rb

C:\>ruby quadeval.rb

please input the value of a

1

please input the value of b

2

please input the value of c

1

Please input the value of x

5

The value of the expression is 36

C:\>

Relational Operators

Operator Operation

== Is equal to

!= Is not equal to

< Is less than

> Is greater than

<= Is less than or equal to

>= Is greater than or equal to

<=> Compare, returning -1, 0 or +1

eql? True if the receiver object and the parameter have the same

type and equal values

equal? True if the receiver object and the parameter have the same

object ID

23

Operator Precedence

Operator Associativity

** Right

!, unary + and - Right

*, /, % Left

+.- Left

& Left

+, - Left

>, <, >=, <= Nonassociative

==, !=, <=> Nonassociative

&& Left

|| Left

=, +=. -=, *=, **=, /=, %=, &=, &&=, ||= Right

not Right

or, and Left

if Statement in Ruby

• if statements in Ruby do not require parentheses

around the control expression, but they do require
end:
irb(main):045:0> if a > 10

irb(main):046:1> b = a * 2

irb(main):047:1> end

=> nil

irb(main):048:0>

24

if..elsif..else

if snowrate < 1

puts "Light snow"

elsif snowrate < 2

puts "Moderate snow"

else

puts "Heavy snow"

end

unless Statement

The unless statement is the opposite of the if

statement

unless sum > 100

puts “We are not finished yet!”

end

25

case Statements

case Expression

when value then

Statement

…

when value then

Statement

[else

Statement]

end

case BooleanExpression

then Expression

…

case BooleanExpression

then Expression

else

Expression

end

case – An Example

case in_val

when -1 then

neg_count += 1

when 0 then

zero_count += 1

when 1 then

pos_count += 1

else

puts "Error - in_val is out of range"

end

26

case – An Example

leap = case

when year % 400 then true

when year % 100 then false

else year %4 == 0

end

while Statement

• The syntax for a while statement:
while ControlExpression

Statement(s)

end

• Example
i = 0

while i < 5 do

puts i

i += 1

end

27

untilStatement

• The syntax for a until statement:
until ControlExpression

Statement(s)

end

• Example
i = 4

until i >= 0 do

puts i

i -= 1

end

loop Statement

• loop statement are infinite loops – there is no

built-in mechanism to limit its iterations.

• loop statements can be controlled using:

– the break statement – which goes to the first

statement after the loop

– the next statement – which goes to the first

statement within the loop

28

loop Statement - Examples

sum = 0

loop do

dat = gets.to_i

if dat < 0 break

sum += dat

end

sum = 0

loop do

dat = gets.to_i

if dat < 0 next

sum += dat

end

Arrays in Ruby

• In Ruby, array size is dynamic, growing and

shrinking as necessary

• Arrays in Ruby can store different types of

data in the same array.

• Arrays can be created by:

– Using the predefined Array class.

– Assign a list literal to a variable.

29

Initializing Arrays - Examples

irb(main):001:0> list1 = Array.new(5)

=> [nil, nil, nil, nil, nil]

irb(main):002:0> list2 = [2, 4, 3.14159, "Fred", []]

=> [2, 4, 3.14159, "Fred", []]

irb(main):003:0> list3 = Array.new(5, "Ho")

=> ["Ho", "Ho", "Ho", "Ho", "Ho"]

irb(main):004:0>

Working With Arrays - Examples

irb(main):004:0> list = [2, 4, 6, 8]

=> [2, 4, 6, 8]

irb(main):005:0> second = list[1]

=> 4

irb(main):006:0> list[3] = 9

=> 9

irb(main):007:0> list

=> [2, 4, 6, 9]

irb(main):009:0> list[2.99999] # indices are

truncated

=> 6

irb(main):010:0> len = list.length

=> 4

irb(main):011:0>

30

for-in Statement

• The for-in statement is used to process

elements of an array.

• The scalar variable takes on the values in the

array one at a time.

• The scalar variable gets the value, not a

reference to a value. Therefore, operations on

the scalar variable do not affect the array.

for-in Statement – An Example

irb(main):001:0> sum = 0

=> 0

irb(main):002:0> list = [2, 4, 6, 8]

=> [2, 4, 6, 8]

irb(main):003:0> for value in list

irb(main):004:1> sum += value

irb(main):005:1> end

=> [2, 4, 6, 8]

irb(main):006:0> sum

=> 20

irb(main):007:0>

31

for-in Statement – Another Example

irb(main):001:0> list = [1, 3, 5, 7]

=> [1, 3, 5, 7]

irb(main):002:0> for value in list

irb(main):003:1> value += 2

irb(main):004:1> end

=> [1, 3, 5, 7]

irb(main):005:0> list

=> [1, 3, 5, 7]

irb(main):006:0>

for-in Statement – Another Example

irb(main):001:0> list = [2, 4, 6]

=> [2, 4, 6]

irb(main):002:0> for index in [0, 1, 2]

irb(main):003:1> puts "For index = #{index}, the

value is #{list[index]}"

irb(main):004:1> end

For index = 0, the value is 2

For index = 1, the value is 4

For index = 2, the value is 6

=> [0, 1, 2]

irb(main):005:0>

32

Built-in Methods for Arrays and Lists

• There are many built-in methods that are a part of

Ruby. They include:

– shift – removes and returns the first element of

the list

– pop – removes and return the last element of the

list

– unshift – takes a scalar or an array literal and

appends it to the beginning of the array.

– push - takes a scalar or an array literal and

appends it to the end of the array.

Built-in Methods for Arrays and Lists

• There are many built-in methods that are a part of

Ruby. They include:

– + - catenates two arrays

– reverse – returns an array with the order of

elements of the array reversed

– include? – returns true if the specific object is in

the array.

– sort – sorts elements as long as Ruby has a way

to compare them.

33

shift – An Example

irb(main):001:0> list = [3, 7, 13, 17]

=> [3, 7, 13, 17]

irb(main):002:0> first = list.shift

=> 3

irb(main):003:0> list

=> [7, 13, 17]

irb(main):004:0>

pop – An Example

irb(main):004:0> list = [2, 4, 6]

=> [2, 4, 6]

irb(main):005:0> last = list.pop

=> 6

irb(main):006:0> list

=> [2, 4]

irb(main):007:0>

34

unshift – An Example

• irb(main):009:0> list = [2, 4, 6]

• => [2, 4, 6]

• irb(main):010:0> list.unshift(8, 10)

• => [8, 10, 2, 4, 6]

• irb(main):011:0>

push – An Example

• irb(main):007:0> list = [2, 4, 6]

• => [2, 4, 6]

• irb(main):008:0> list.push(8, 10)

• => [2, 4, 6, 8, 10]

• irb(main):009:0>

35

concat - An Example

irb(main):011:0> list1 = [1, 3, 5, 7]

=> [1, 3, 5, 7]

irb(main):012:0> list2 = [2, 4, 6, 8]

=> [2, 4, 6, 8]

irb(main):013:0> list1.concat(list2)

=> [1, 3, 5, 7, 2, 4, 6, 8]

irb(main):014:0>

+ - An Example

irb(main):014:0> list1 = [1, 3, 5, 7]

=> [1, 3, 5, 7]

irb(main):015:0> list2 = [2, 4, 6, 8]

=> [2, 4, 6, 8]

irb(main):016:0> list3 = list1 + list2

=> [1, 3, 5, 7, 2, 4, 6, 8]

irb(main):017:0>

36

reverse – An Example

irb(main):018:0> list = [2, 4, 6, 8]

=> [2, 4, 6, 8]

irb(main):019:0> list.reverse

=> [8, 6, 4, 2]

irb(main):020:0> list

=> [2, 4, 6, 8]

irb(main):021:0> list.reverse!

=> [8, 6, 4, 2]

irb(main):022:0> list

=> [8, 6, 4, 2]

irb(main):023:0>

include? – An Example

• irb(main):023:0> list = [2, 4, 6, 8]

• => [2, 4, 6, 8]

• irb(main):024:0> list.include?(4)

• => true

• irb(main):025:0> list.include?(10)

• => false

• irb(main):026:0>

37

sort – An Example

irb(main):028:0> list = [16, 8, 2, 4]

=> [16, 8, 2, 4]

irb(main):029:0> list.sort

=> [2, 4, 8, 16]

irb(main):030:0> list2 = ["jo", "fred", "mike",

"larry"]

=> ["jo", "fred", "mike", "larry"]

irb(main):031:0> list2.sort

=> ["fred", "jo", "larry", "mike"]

irb(main):032:0>

irb(main):032:0> list = [2, "jo", 8, "fred"]

=> [2, "jo", 8, "fred"]

irb(main):033:0> list.sort

ArgumentError: comparison of Fixnum with String

failed

from (irb):33:in `sort'

from (irb):33

from C:/Ruby193/bin/irb:12:in `<main>'

irb(main):034:0>

