Systems I: Computer Organization and Architecture

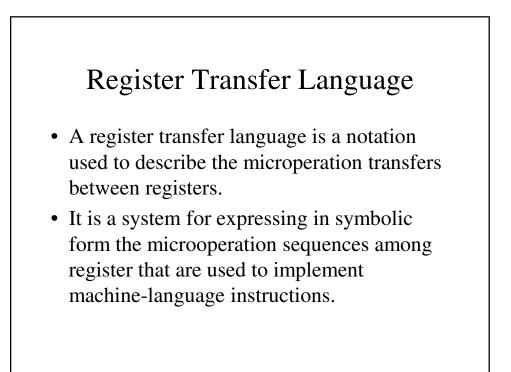
Lecture 9 - Register Transfer and Microoperations

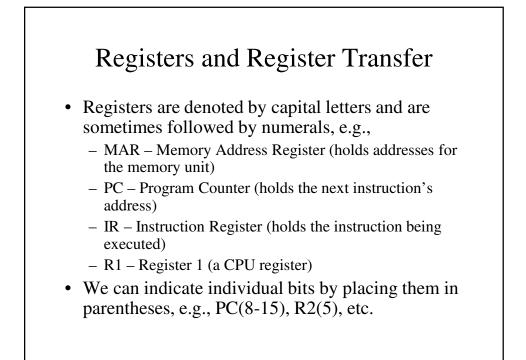
Microoperations

- Digital systems are modular in nature, with modules containing registers, decoders, arithmetic elements, control logic, etc.
- These digital components are defined by the registers that they contain and the operations performed on their data. These operations are called microoperations.
- Microoperations are elementary operations performed on the information stored in one or more registers.

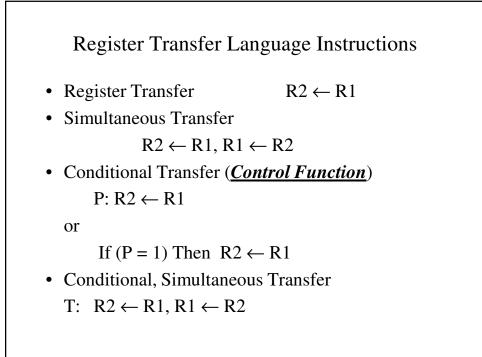
Hardware Organization

- The hardware organization of a digital computer is best defined by specifying:
 - The set of register that it contains and their function.
 - The sequence of microoperations performed on the binary information stored in the registers.
 - The control signals that initiates the sequence of microoperations.

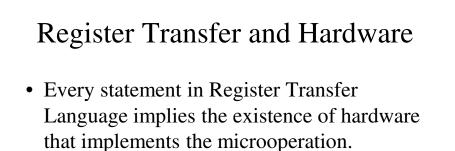




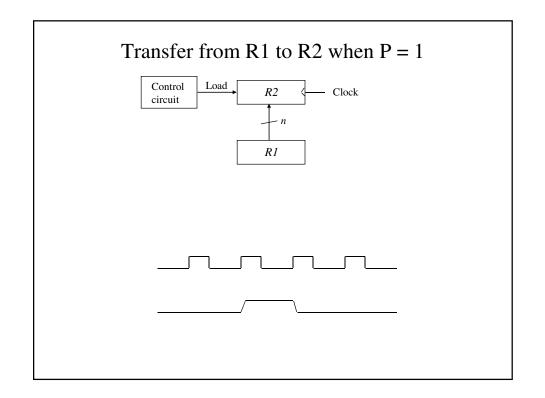
R1	7 6 5 4 3 2 1 0
Register R	Showing Individual Bits
RI	PC(H) PC(L)
Numbering of Bits	Divided Into Two Parts



	C	
Symbol	Description	Examples
Letters (and numerals)	Denotes a register	MAR, R2
Parentheses ()	Denotes a part of a register	R2(0-7), R2(L)
Arrow \rightarrow	Denotes Transfer of information	$R2 \leftarrow R1$
Comma ,	Separates 2 microoperations	$R2 \leftarrow R1, R1 \leftarrow R1$

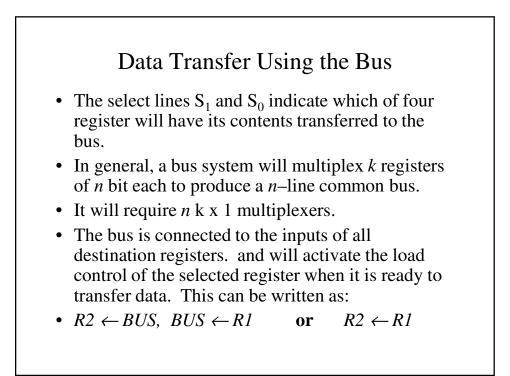


The statement P: R2 ← R1 implies the existence of the necessary circuitry to implement the transfer as well as the mechanism to set and clear the control variable P.

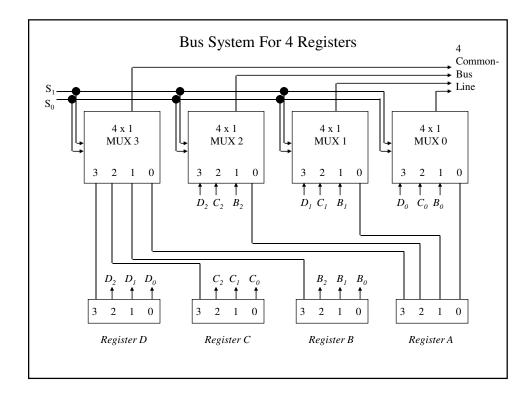


The Bus

- A bus is a set of common wires that carries data between registers.
 - There is a separate wire for every bit in the registers.
 - There are also a set of control signals which determines which register is selected by the bus at a particular time.
- A bus can be constructed using multiplexer which enable a sets of registers to share a common bus for data transfer.

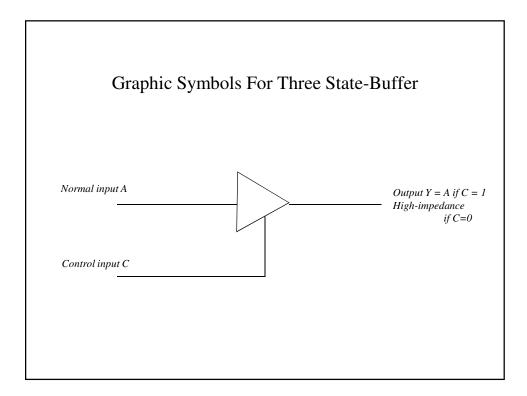


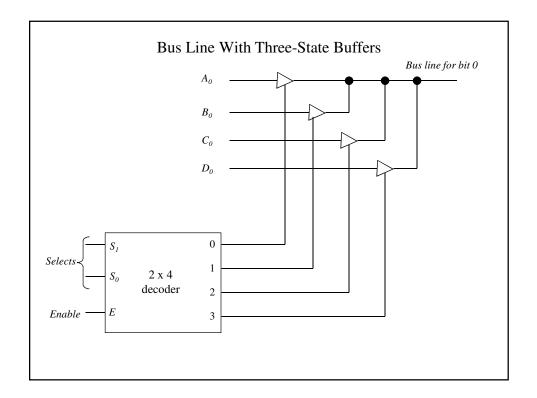
Functio	n Table f	or the Bus
<u>S</u> 1	<u>S</u> ₀	<u>Register Selected</u>
0	0	A
0	1	В
1	0	C
1	1	D

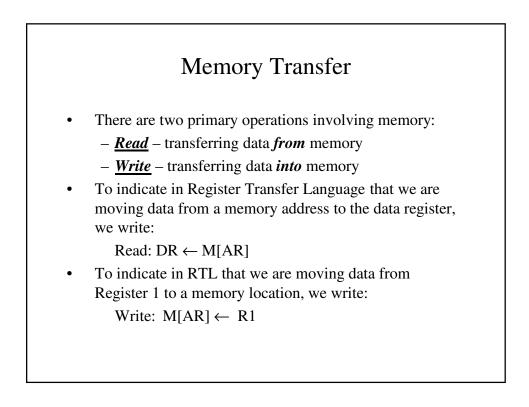


Three State-Bus Buffers

- A bus can be built using three-state buffers instead of multiplexers.
- A three-state gate has three states: 1, 0 and a highimpedance state, which behaves like an open circuit.
- It is possible to connect a large number of threestate gates in a common bus line without overloading it.

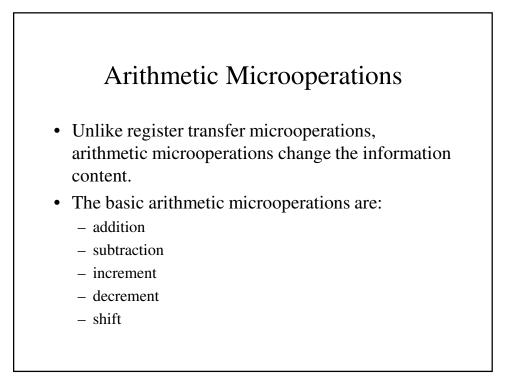






Microoperations

- Microoperations are classified into four categories:
 - Register transfer microoperations (data moves from register to register)
 - Arithmetic microoperations (perform arithmetic on data in registers)
 - Logic microoperations (perform bit manipulation on data in registers)
 - Shift microoperations (perform shift on data in registers)



Arithmetic Microoperations (continued)

• The RTL statement:

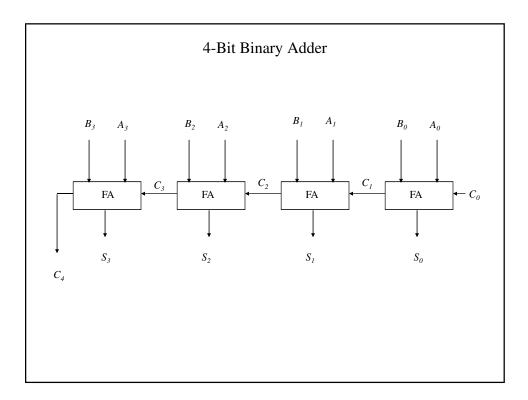
 $\text{R3} \leftarrow \text{R1} + \text{R2}$

indicates an add microoperation. We can similarly specify the other arithmetic microoperations.

- Multiplication and division are not considered microoperations.
 - Multiplication is implemented by a sequence of adds and shifts.
 - Division is implemented by a sequence of substracts and shifts.

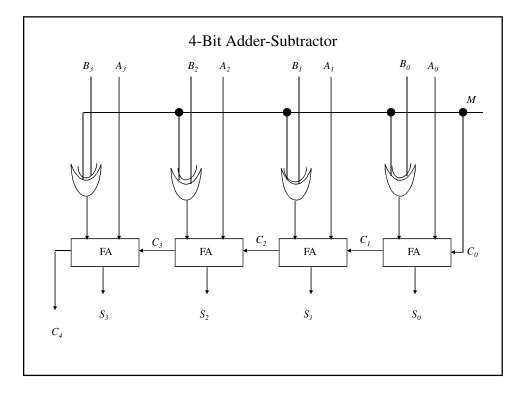
<u>Symbolic</u>	Description
Designation	
$R3 \leftarrow R1 + R2$	Contents of R1 plus R2 transferred to R3
$R3 \leftarrow R1 - R2$	Contents of R1 minus R2 transferred to R3
$R2 \leftarrow \overline{R2}$	Complement contents of R2 (1's comp.)
$R2 \leftarrow \overline{R2} + 1$	2's complment contens of R2 (negate)
$R3 \leftarrow R1 + \overline{R2} + 1$	R1 plus 2's comp. of R2
$R1 \leftarrow R1 + 1$	Increment content of R1 by 1
$R1 \leftarrow R1 - 1$	Decrement content of R1 by 1

Binary Adder We implement a binary adder with registers to hold the data and a digital circuit to perform the addition (called a *binary adder*). The binary adders is constructed using full adders connected in cascade so that the carry produced by one full adder becomes an input for the next. Adding two *n*-bit numbers requires *n* full adders. The *n* data bits for *A* and *B* might come from *R1* and *R2* respectively



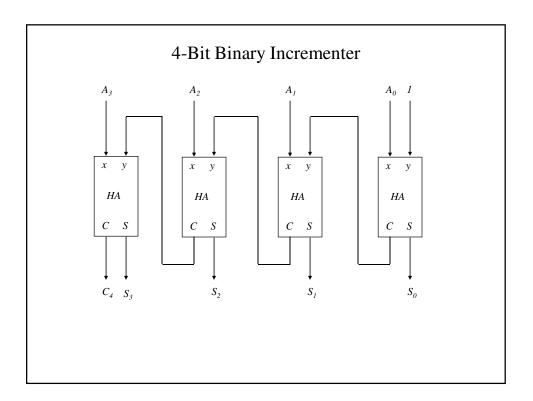
Adder-Subtracter

- Subtracting A B is most easily done by adding B' to A and then adding 1.
- This makes it convenient to combine both addition and subtraction into one circuit, called an adder-subtracter.
- M is the mode indicator
 - M = 0 indicates addition (B is left alone and C_0 is 0)
 - M = 1 indicates subtraction (B is complement and C_0 is 1).



Binary Incrementer

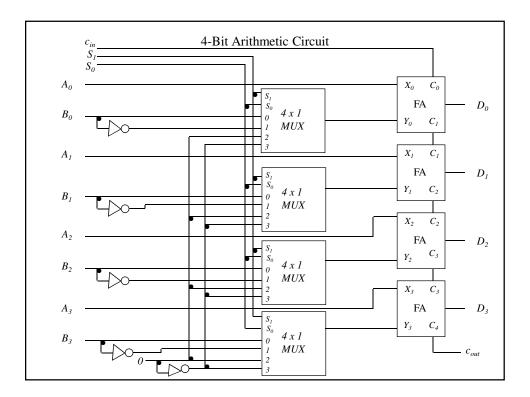
- The binary incrementer adds 1 to the contents of a register, e.g., a register storing 0101 would have 0110 in it after being incremented.
- There are times when we want incrementing done independent of a register. We can accomplish this with a series of cascading half-adders.



Arithmetic Circuit

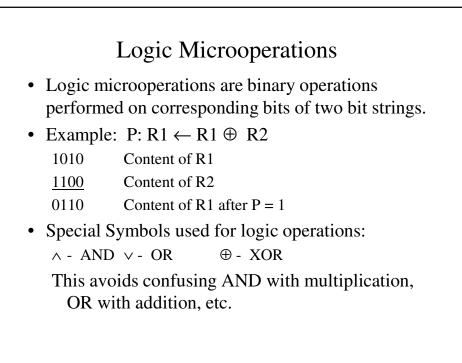
- We can implement 7 arithmetic microoperations (add, add with carry, subtract, subtract with borrow, increment, decrement and transfer) with one circuit.
- We provide a series of cascading full adders with A_i and the output of a 4x1 multiplexer.
 - The multiplexers' inputs are two selects, B_i, B_i', logical 0 and logical 1.
 - Which of these four values we provide (together with the carry) determines which microoperation is performed.

	<u>Sele</u>	<u>ct</u>]	Inpu	t <u>Output</u>	
<u>S1</u>	<u>S</u> 0	<u>C</u> in	Y	$\underline{\mathbf{D} = \mathbf{A} + \mathbf{Y} + \mathbf{C}_{in}}$	Microoperation
0	0	0	В	$\mathbf{D} = \mathbf{A} + \mathbf{B}$	Add
0	0	1	В	$\mathbf{D} = \mathbf{A} + \mathbf{B} + 1$	Add with Carry
0	1	0	B	$D = A + \overline{B}$	Subtract with Borrow
0	1	1	B	$D = A + \overline{B} + 1$	subtract
1	0	0	0	D = A	Transfer A
1	0	1	0	D = A + 1	Increment A
1	1	0	1	$\mathbf{D} = \mathbf{A} - 1$	Decrement A
1	1	1	1	D = A	Transfer A



The Microoperations of the Arithmetic Circuit

- When $S_1S_0 = 00$, the MUX provides B. The result is Add (for $C_{in} = 0$) or Add With Carry (for $C_{in} = 1$).
- When $S_1S_0 = 01$, the MUX provides B'. The result is Subtract with Borrow (for $C_{in} = 0$) or Subtract (for $C_{in} = 1$).
- When $S_1S_0 = 10$, the MUX provides 0. The result is Transfer (for $C_{in} = 0$) or Increment (for $C_{in} = 1$).
- When $S_1S_0 = 11$, the MUX provides 1. The result is Decrement (for $C_{in} = 0$) or Transfer (for $C_{in} = 1$).

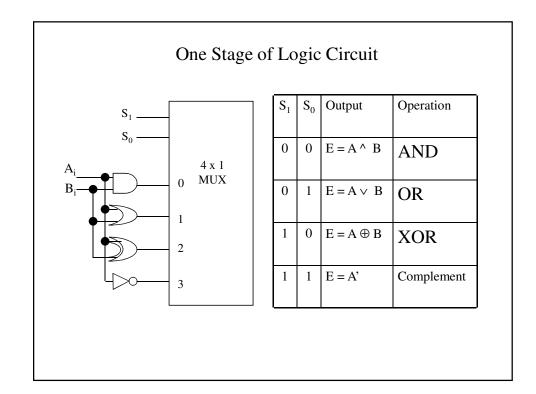


[ru	th]	Fable	es fo	or 16	5 2-"	Vari	able	e Fui	nctic
<u>X</u>	Y	<u>F</u> ₀	<u>F</u> 1	<u>F</u> 2	<u>F</u> ₃	<u>F</u> 4	<u>F</u> 5	<u>F</u> 6	<u>F</u> 7
0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

K	Y	<u>F</u> 8	<u>F9</u>	<u>F</u> ₁₀	<u>F₁₁</u>	<u>F</u> ₁₂	<u>F</u> ₁₃	<u>F₁₄</u>	<u>F₁₅</u>
0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

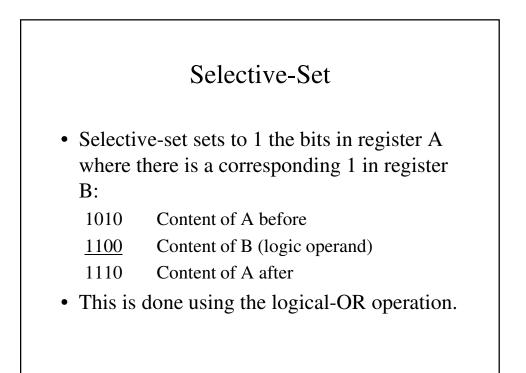
	n Logic Microop	crations
Boolean Function	Microoperation	Name
$F_0 = 0$	$F \leftarrow 0$	Clear
$F_1 = xy$	$F \leftarrow A \land B$	AND
$F_2 = xy'$	$F \leftarrow A \land \overline{B}$	
$F_3 = x$	F←A	Transfer A
$F_4 = x'y$	$F \leftarrow \overline{A} \wedge B$	
$F_5 = y$	F←B	Transfer B
$F_6 = x \oplus y$	$F \leftarrow A \oplus B$	Exclusive-OR
$F_7 = x + y$	$F \leftarrow A \lor B$	OR

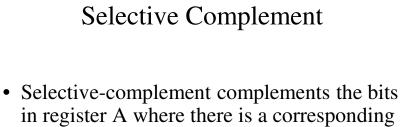
Boolean Function	Microoperation	Name
$F_8 = (x + y)'$	$F \leftarrow \overline{A \lor B}$	NOR
$F_9 = (x \oplus y)'$	$F \leftarrow \overline{A \oplus B}$	Exclusive-NOR
$F_{10} = y'$	$F \leftarrow \overline{B}$	Complement B
$\mathbf{F}_{11} = \mathbf{x} + \mathbf{y}'$	$F \leftarrow A \lor \overline{B}$	
$F_{12} = x'$	$F \leftarrow \overline{A}$	Complement A
$F_{13} = x' + y$	$F \leftarrow \overline{A} \lor B$	
$F_{14} = (xy)'$	$F \leftarrow \overline{A \land B}$	NAND
$F_{15} = 1$	$F \leftarrow all 1$'s	Set to all 1's



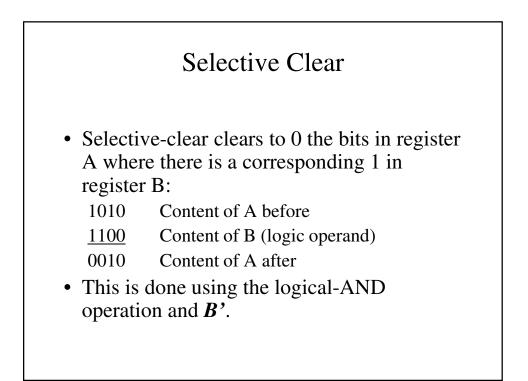
Logic Applications

- Logic Operations allow us to manipulate individual bits in ways that we could not do otherwise.
- These applications include:
 - selective set
 - selective complement
 - select clear
 - mask
 - insert
 - clear



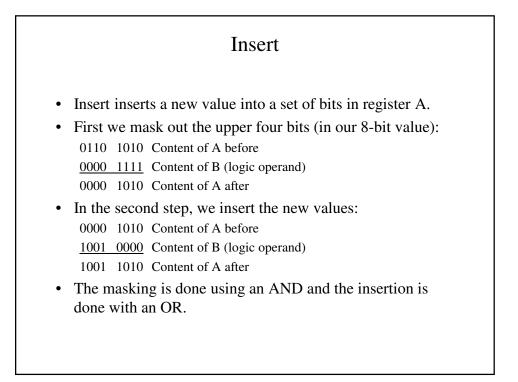


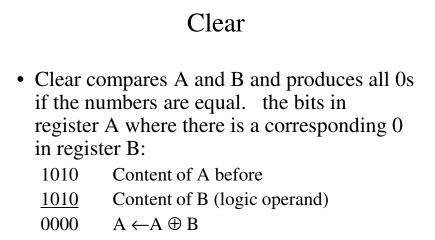
- 1 in register B:
- 1010 Content of A before
- <u>1100</u> Content of B (logic operand)
- 0110 Content of A after
- This is done using the exclusive-OR operation.



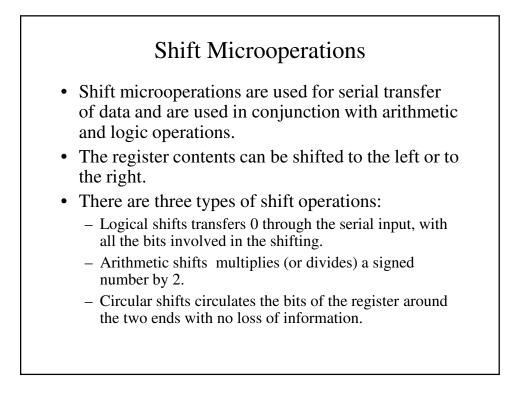
Mask

- Mask clears to 0 the bits in register A where there is a corresponding 0 in register B:
 - 1010 Content of A before
 - <u>1100</u> Content of B (logic operand)
 - 1000 Content of A after
- This is done using the logical-AND operation and **B**.

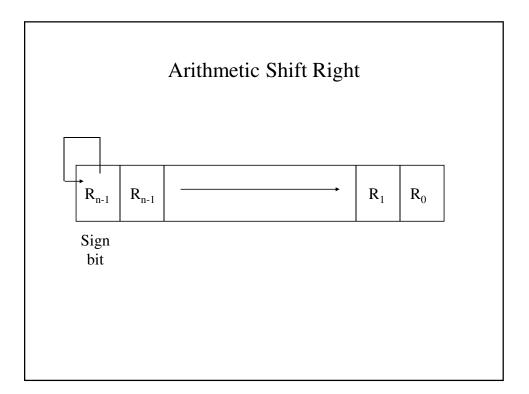


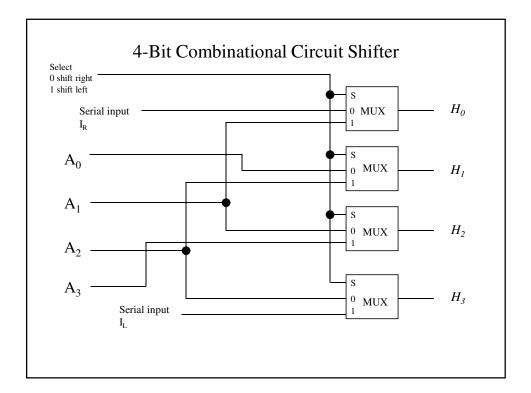


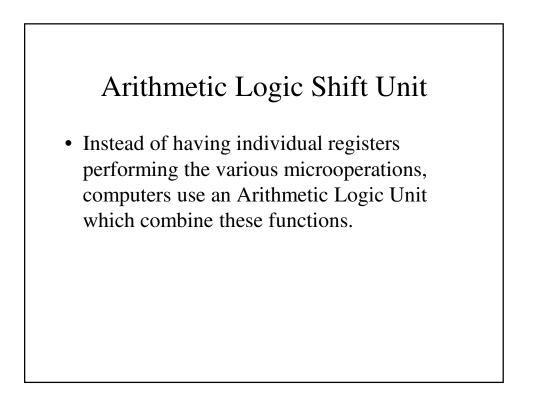
If A& B are both 1 or both 0, this produces 0. This is done using the logical-AND operation and **B**.

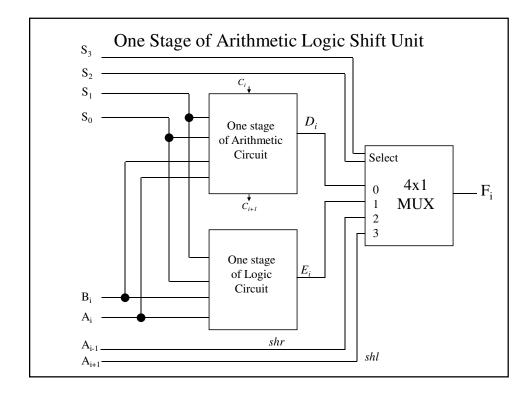


Symbolic Designation	Description
$R \leftarrow shl R$	Shift-left register R
$R \leftarrow shr R$	Shift-right register R
$R \leftarrow cil R$	Circular shift-left register R
$R \leftarrow cir R$	Circular shift-right register R
$R \leftarrow ashl R$	Arithmetic Shift-left register R
$R \leftarrow a shr R$	Arithmetic Shift-right register R









	<u>Op</u>	eratio	on Sele	ect		
<u>S</u> 3	<u>S</u> 2	<u>S</u> 1	<u>S</u> 0	<u>C</u> in	Operation	Function
0	0	0	0	0	F=A	Transfer A
0	0	0	0	1	$\mathbf{F} = \mathbf{A} + 1$	Increment A
0	0	0	1	0	F = A + B	Addition
0	0	0	1	1	$\mathbf{F} = \mathbf{A} + \mathbf{B} + 1$	Add with Carry
0	0	1	0	0	$F = A + \overline{B}$	Subtract with Borrow
0	0	1	0	1	$F = A + \overline{B} + 1$	Subtraction
0	0	1	1	0	F = A - 1	Decrement A
0	0	1	1	1	F = A	Transfer A

	<u>Ope</u>	ratio	n Sele	<u>ct</u>		
<u>S</u> 3	<u>S</u> 2	<u>S</u> 1	<u>S</u> 0	<u>C</u> _{in}	Operation	Function
0	1	0	0	х	$F = A \wedge B$	AND
0	1	0	1	x	$F = A \lor B$	OR
0	1	1	0	x	$F = A \oplus B$	XOR
0	1	1	1	х	F = A	Complement A
1	0	х	х	х	F = shr A	Shift-Right A into F
1	1	х	x	х	F = shl A	Shift-Left A into F