
Systems I: Computer

Organization and Architecture

Lecture 9 - Register Transfer and

Microoperations

Microoperations

• Digital systems are modular in nature, with

modules containing registers, decoders, arithmetic

elements, control logic, etc.

• These digital components are defined by the

registers that they contain and the operations

performed on their data. These operations are

called microoperations.

• Microoperations are elementary operations

performed on the information stored in one or

more registers.

Hardware Organization

• The hardware organization of a digital
computer is best defined by specifying:

– The set of register that it contains and their
function.

– The sequence of microoperations performed
on the binary information stored in the
registers.

– The control signals that initiates the sequence
of microoperations.

Register Transfer Language

• A register transfer language is a notation

used to describe the microperation transfers

between registers.

• It is a system for expressing in symbolic

form the microoperation sequences among

register that are used to implement

machine-language instructions.

Registers and Register Transfer

• Registers are denoted by capital letters and are
sometimes followed by numerals, e.g.,

– MAR – Memory Address Register (holds addresses for
the memory unit)

– PC – Program Counter (holds the next instruction’s
address)

– IR – Instruction Register (holds the instruction being
executed)

– R1 – Register 1 (a CPU register)

• We can indicate individual bits by placing them in
parentheses, e.g., PC(8-15), R2(5), etc.

Block Diagrams of Registers

R1

Register R Showing Individual Bits

7 6 5 4 3 2 1 0

R1

Numbering of Bits

15 0

Divided Into Two Parts

15

PC(L)PC(H)

7 08

Register Transfer Language Instructions

• Register Transfer R2 ← R1

• Simultaneous Transfer

R2 ← R1, R1 ← R2

• Conditional Transfer (Control Function)

P: R2 ← R1

or

If (P = 1) Then R2 ← R1

• Conditional, Simultaneous Transfer

T: R2 ← R1, R1 ← R2

Basic Symbols For Register Transfer

R2 ← R1, R1 ← R1Separates 2

microoperations

Comma ,

R2 ← R1Denotes Transfer

of information
Arrow →

R2(0-7), R2(L)Denotes a part

of a register

Parentheses ()

MAR, R2Denotes a

register

Letters (and

numerals)

ExamplesDescriptionSymbol

Register Transfer and Hardware

• Every statement in Register Transfer

Language implies the existence of hardware

that implements the microoperation.

• The statement P: R2 ← R1 implies the

existence of the necessary circuitry to

implement the transfer as well as the

mechanism to set and clear the control

variable P.

Transfer from R1 to R2 when P = 1

Clock
Control

circuit
R2

R1

n

Load

The Bus

• A bus is a set of common wires that carries
data between registers.

– There is a separate wire for every bit in the
registers.

– There are also a set of control signals which
determines which register is selected by the bus
at a particular time.

• A bus can be constructed using multiplexer
which enable a sets of registers to share a
common bus for data transfer.

Data Transfer Using the Bus

• The select lines S1 and S0 indicate which of four
register will have its contents transferred to the
bus.

• In general, a bus system will multiplex k registers
of n bit each to produce a n–line common bus.

• It will require n k x 1 multiplexers.

• The bus is connected to the inputs of all
destination registers. and will activate the load
control of the selected register when it is ready to
transfer data. This can be written as:

• R2 ← BUS, BUS ← R1 or R2 ← R1

Function Table for the Bus

D11

C01

B10

A00

Register SelectedS0S1

Bus System For 4 Registers

4 x 1

MUX 3

3 2 1 0

4 x 1

MUX 2

3 2 1 0

4 x 1

MUX 1

3 2 1 0

4 x 1

MUX 0

3 2 1 0

S0

S1

4

Common-

Bus

Line

3 2 1 0

Register D

3 2 1 0

Register C

3 2 1 0

Register B

3 2 1 0

Register A

B2 B1 B0C1C2 C0D1D2 D0

B1C1D1 B0C0D0B2C2D2

Three State-Bus Buffers

• A bus can be built using three-state buffers instead

of multiplexers.

• A three-state gate has three states: 1, 0 and a high-

impedance state, which behaves like an open

circuit.

• It is possible to connect a large number of three-

state gates in a common bus line without

overloading it.

Graphic Symbols For Three State-Buffer

Normal input A

Control input C

Output Y = A if C = 1

High-impedance

if C=0

Bus Line With Three-State Buffers

2 x 4

decoder

S1

S0

E

1

2

3

0

B0

C0

D0

A0

Bus line for bit 0

Selects

Enable

Memory Transfer

• There are two primary operations involving memory:

– Read – transferring data from memory

– Write – transferring data into memory

• To indicate in Register Transfer Language that we are

moving data from a memory address to the data register,

we write:

Read: DR ← M[AR]

• To indicate in RTL that we are moving data from

Register 1 to a memory location, we write:

Write: M[AR] ← R1

Microoperations

• Microoperations are classified into four
categories:

– Register transfer microoperations (data moves
from register to register)

– Arithmetic microoperations (perform arithmetic
on data in registers)

– Logic microoperations (perform bit
manipulation on data in registers)

– Shift microoperations (perform shift on data in
registers)

Arithmetic Microoperations

• Unlike register transfer microoperations,

arithmetic microoperations change the information

content.

• The basic arithmetic microoperations are:

– addition

– subtraction

– increment

– decrement

– shift

Arithmetic Microoperations (continued)

• The RTL statement:

R3 ← R1 + R2

indicates an add microoperation. We can similarly

specify the other arithmetic microoperations.

• Multiplication and division are not considered

microoperations.

– Multiplication is implemented by a sequence of adds

and shifts.

– Division is implemented by a sequence of substracts

and shifts.

Arithmetic Microoperations

Decrement content of R1 by 1R1 ← R1 - 1

Increment content of R1 by 1R1 ← R1 + 1

R1 plus 2’s comp. of R2R3 ← R1+R2 + 1

2’s complment contens of R2 (negate)R2 ← R2 + 1

Complement contents of R2 (1’s comp.)R2 ← R2

Contents of R1 minus R2 transferred to R3R3 ← R1 – R2

Contents of R1 plus R2 transferred to R3R3 ← R1 + R2

DescriptionSymbolic

Designation

Binary Adder

• We implement a binary adder with registers to

hold the data and a digital circuit to perform the

addition (called a binary adder).

• The binary adders is constructed using full adders

connected in cascade so that the carry produced by

one full adder becomes an input for the next.

• Adding two n-bit numbers requires n full adders.

• The n data bits for A and B might come from R1

and R2 respectively

4-Bit Binary Adder

FA FA FA FA C0

C1C2C3

C4

S0S1S2S3

B0 A0
B1 A1B2 A2

B3 A3

Adder-Subtracter

• Subtracting A – B is most easily done by adding

B’ to A and then adding 1.

• This makes it convenient to combine both addition

and subtraction into one circuit, called an adder-

subtracter.

• M is the mode indicator

– M = 0 indicates addition (B is left alone and C0 is 0)

– M = 1 indicates subtraction (B is complement and C0 is

1).

4-Bit Adder-Subtractor

FA FA FA FA C0

C1C2C3

C4

S0S1S2S3

B0 A0B1 A1B2 A2B3 A3

M

Binary Incrementer

• The binary incrementer adds 1 to the

contents of a register, e.g., a register storing

0101 would have 0110 in it after being

incremented.

• There are times when we want incrementing

done independent of a register. We can

accomplish this with a series of cascading

half-adders.

4-Bit Binary Incrementer

HA

x y

SC

S3
C4

A3

HA

x y

SC

S2

A2

HA

x y

SC

S1

A1

HA

x y

SC

S0

A0 1

Arithmetic Circuit

• We can implement 7 arithmetic micro-
operations (add, add with carry, subtract,
subtract with borrow, increment, decrement
and transfer) with one circuit.

• We provide a series of cascading full adders
with Ai and the output of a 4x1 multiplexer.

– The multiplexers’ inputs are two selects, Bi, Bi’,
logical 0 and logical 1.

– Which of these four values we provide
(together with the carry) determines which
microoperation is performed.

Arithmetic Circuit Function Table

Transfer AD = A1111

Decrement AD = A – 11011

Increment AD = A + 10101

Transfer AD = A0001

subtractD = A + B + 1B110

Subtract with BorrowD = A + BB010

Add with CarryD = A + B + 1B100

AddD = A + BB000

MicrooperationD = A + Y + CinYCinS0S1

Select Input Output

4-Bit Arithmetic Circuit

X0

Y0

C0

C1

FA D0

X1

Y1

C1

C2

FA D1

X2

Y2

C2

C3

FA D2

X3

Y3

C3

C4

FA D3

cout

4 x 1

MUX

S1

S0

0

1

2

3

4 x 1

MUX

S1

S0

0

1

2

3

4 x 1

MUX

S1

S0

0

1

2

3

4 x 1

MUX

S1

S0

0

1

2

3

cin

S1

S0

A1

A2

A3

A0

B0

B1

B2

B3

0

The Microoperations of the Arithmetic

Circuit

• When S1S0 = 00, the MUX provides B. The result
is Add (for Cin = 0) or Add With Carry (for Cin =
1).

• When S1S0 = 01, the MUX provides B’. The result
is Subtract with Borrow (for Cin = 0) or Subtract
(for Cin = 1).

• When S1S0 = 10, the MUX provides 0. The result
is Transfer (for Cin = 0) or Increment (for Cin =
1).

• When S1S0 = 11, the MUX provides 1. The result
is Decrement (for Cin = 0) or Transfer (for Cin =
1).

Logic Microoperations

• Logic microoperations are binary operations

performed on corresponding bits of two bit strings.

• Example: P: R1 ← R1 ⊕ R2

1010 Content of R1

1100 Content of R2

0110 Content of R1 after P = 1

• Special Symbols used for logic operations:

∧ - AND ∨ - OR ⊕ - XOR

This avoids confusing AND with multiplication,

OR with addition, etc.

Truth Tables for 16 2-Variable Function

1010101011

1100110001

1111000010

0000000000

F7F6F5F4F3F2F1F0yx

Truth Tables for 16 2-Variable Function (continued)

1010101011

1100110001

1111000010

1111111100

F15F14F13F12F11F10F9F8yx

Sixteen Logic Microoperations

ORF←A ∨ BF7 = x + y

Exclusive-ORF ←A ⊕ BF6 = x ⊕ y

Transfer BF ←BF5 = y

F ←A ∧ BF4 = x’y

Transfer AF ←AF3 = x

F ←A ∧ BF2 = xy’

ANDF ← A ∧ BF1 = xy

ClearF ← 0F0 = 0

NameMicrooperation Boolean Function

Sixteen Logic Microoperations (continued)

NameMicrooperation Boolean Function

Set to all 1’sF ← all 1’sF15 = 1

NANDF ← A ∧ BF14 = (xy)’

F ← A ∨ BF13 = x’ + y

Complement AF ← AF12 = x’

F ← A ∨ BF11 = x + y’

Complement BF ← BF10 = y’

Exclusive-NORF ← A ⊕ BF9 = (x ⊕ y)’

NORF ← A ∨ BF8 = (x + y)’

One Stage of Logic Circuit

4 x 1

MUX

S1

S0

0

1

3

2

Ai

Bi

ComplementE = A’11

XORE = A ⊕ B01

ORE = A ∨ B10

ANDE = A ^ B00

OperationOutputS0S1

Logic Applications

• Logic Operations allow us to manipulate

individual bits in ways that we could not do

otherwise.

• These applications include:

– selective set

– selective complement

– select clear

– mask

– insert

– clear

Selective-Set

• Selective-set sets to 1 the bits in register A

where there is a corresponding 1 in register

B:

1010 Content of A before

1100 Content of B (logic operand)

1110 Content of A after

• This is done using the logical-OR operation.

Selective Complement

• Selective-complement complements the bits
in register A where there is a corresponding
1 in register B:

1010 Content of A before

1100 Content of B (logic operand)

0110 Content of A after

• This is done using the exclusive-OR
operation.

Selective Clear

• Selective-clear clears to 0 the bits in register
A where there is a corresponding 1 in
register B:

1010 Content of A before

1100 Content of B (logic operand)

0010 Content of A after

• This is done using the logical-AND
operation and B’.

Mask

• Mask clears to 0 the bits in register A where

there is a corresponding 0 in register B:

1010 Content of A before

1100 Content of B (logic operand)

1000 Content of A after

• This is done using the logical-AND

operation and B.

Insert

• Insert inserts a new value into a set of bits in register A.

• First we mask out the upper four bits (in our 8-bit value):

0110 1010 Content of A before

0000 1111 Content of B (logic operand)

0000 1010 Content of A after

• In the second step, we insert the new values:

0000 1010 Content of A before

1001 0000 Content of B (logic operand)

1001 1010 Content of A after

• The masking is done using an AND and the insertion is

done with an OR.

Clear

• Clear compares A and B and produces all 0s
if the numbers are equal. the bits in
register A where there is a corresponding 0
in register B:

1010 Content of A before

1010 Content of B (logic operand)

0000 A ←A ⊕ B

If A& B are both 1 or both 0, this produces 0.This
is done using the logical-AND operation and B.

Shift Microoperations

• Shift microoperations are used for serial transfer
of data and are used in conjunction with arithmetic
and logic operations.

• The register contents can be shifted to the left or to
the right.

• There are three types of shift operations:

– Logical shifts transfers 0 through the serial input, with
all the bits involved in the shifting.

– Arithmetic shifts multiplies (or divides) a signed
number by 2.

– Circular shifts circulates the bits of the register around
the two ends with no loss of information.

Shift Microoperations

Arithmetic Shift-right register RR ← ashr R

Arithmetic Shift-left register RR ← ashl R

Circular shift-right register RR ← cir R

Circular shift-left register RR ← cil R

Shift-right register RR ← shr R

Shift-left register RR ← shl R

DescriptionSymbolic Designation

Arithmetic Shift Right

Rn-1Rn-1 R1 R0

Sign

bit

4-Bit Combinational Circuit Shifter

MUX

S

1

0

1

0

1

0

1

0

MUX

MUX

MUX

S

S

S

H0

H1

H2

H3

Select

0 shift right

1 shift left

Serial input

IR

A1

A0

A2

A3

Serial input

IL

Arithmetic Logic Shift Unit

• Instead of having individual registers

performing the various microoperations,

computers use an Arithmetic Logic Unit

which combine these functions.

One Stage of Arithmetic Logic Shift Unit

One stage

of Arithmetic

Circuit

One stage

of Logic

Circuit

Ci

Ci+1

Select

0

1

2

3

4x1

MUX
Fi

Di

Ei

shr

shl

S3

S2

S1

S0

Bi

Ai

Ai-1

Ai+1

Function Table for Arithmetic Logic Shift Unit

Transfer AF = A11100

Decrement AF = A – 101100

SubtractionF = A + B + 110100

Subtract with BorrowF = A + B00100

Add with CarryF = A + B + 111000

AdditionF = A + B01000

Increment AF = A + 110000

Transfer AF =A00000

FunctionOperationCinS0S1S2S3

Operation Select

Function Table for Arithmetic Logic Shift Unit

Shift-Left A into FF = shl Axxx11

Shift-Right A into FF = shr Axxx01

Complement AF = Ax1110

XORF = A ⊕ Bx0110

ORF = A ∨ Bx1010

ANDF = A ∧ Bx0010

FunctionOperationCinS0S1S2S3

Operation Select

