Systems I: Computer Organization and Architecture

Lecture 2: Number Systems and Arithmetic

Number Systems - Base 10

The number system that we use is base 10 :

$$
\begin{aligned}
1734 & =1000+700+30+4 \\
& =1 \times 1000+7 \times 100+3 \times 10+4 \times 1 \\
& =1 \times 10^{3}+7 \times 10^{2}+3 \times 10^{1}+4 \times 10^{0} \\
724.5 & =7 \times 100+2 \times 10+4 \times 1+5 \times 0.1 \\
& =7 \times 10^{2}+2 \times 10^{1}+4 \times 10^{0}+5 \times 10^{-1}
\end{aligned}
$$

Why use base 10 ?

Number Systems - Base 2

For computers, base 2 is more convenient (why?)

$$
\begin{aligned}
& 10011_{2}=1 \times 16+0 \times 8+0 \times 4+1 \times 2+1 \times 1=19_{10} \\
& 100010_{2}
\end{aligned}=1 \times 32+0 \times 16+0 \times 8+0 \times 4+1 \times 2+0 \times 1=34_{10}, ~ \begin{aligned}
101.001_{2} & =1 \times 4+0 \times 2+1 \times 1+0 \times 0.5+0 \times 0.25+1 \times 0.125 \\
& =5.125_{10}
\end{aligned}
$$

Example - $\quad 1101011_{2}=$?

$$
10110111_{2}=?
$$

$$
10100.1101_{2}=?
$$

Number Systems - Base 16

Hexadecimal (base 16) numbers are commonly used because it is convert them into binary (base 2) and vice versa.

$$
\begin{aligned}
8 \mathrm{CE}_{16} & =8 \times 256+12 \times 16+14 \times 1 \\
& =2048+192+14 \\
& =2254 \\
3 \mathrm{~F} 9 & =3 \times 256+15 \times 16+9 \times 1 \\
& =768+240+9=1017
\end{aligned}
$$

Number Systems - Base 16 (continued)

Base 2 is easily converted into base 16 :

$$
\begin{aligned}
& 100011001110_{2}=100011001110=8 \text { C E }_{16} \\
& 11101101110101001_{2}=11101101110101001=1 \text { D B A } 9_{16} \\
& 10110001010000010111_{2}=?_{16} \\
& 101101010010111011_{2}=?_{16}
\end{aligned}
$$

Number Systems - Base 16 (continued)

Converting base 16 into base 2 works the same way:
F3A5 ${ }_{16}=1111001110100101_{2}$
$76 \mathrm{EF}_{16}=0111011011101111_{2}$
$\mathrm{AB} 3 \mathrm{D}_{16}=?_{2}$
15 C. $38_{16}=?_{2}$

Number Systems - Base 8

Octal (base 8) numbers used to be commonly used because it is convert them into binary (base 2) and vice versa. However, the absence of 8 and 9 is not obvious enough and they were frequently mistaken for decimal values.

$$
\begin{aligned}
4316_{8} & =4 \times 8^{3}+3 \times 8^{2}+1 \times 8^{1}+6 \times 8^{0} \\
& =4 \times 512+3 \times 64+1 \times 8+6 \times 1 \\
& =2048+192+8+6 \\
& =2254_{10}
\end{aligned}
$$

Number Systems - Base 8 (continued)

Base 2 is easily converted into base 8 :
$10001100111_{2}=100011001110=4316_{8}$
$11101101110101001_{2}=11101101110101001=355651_{8}$
$10110001010000010111_{2}=?_{8}$
$101101010010111011_{2}=?_{8}$

Number Systems - Base 8 (continued)

Converting base 8 into base 2 works the same way:
$36351_{8}=1111001110100101_{2}$
$73357_{8}=111011011101111_{2}$
$2436_{8}=?_{2}$
$1573_{8}=?_{2}$

Converting From Decimal to Binary

\section*{Converting From Decimal to Hexadecimal
 $\left.16$| $\|$14 R
 0 R |
| ---: |
| 13 |
| 14 | \right\rvert\,}

Converting From Decimal to Octal

Binary, Octal, Decimal and Hexadecimal Equivalents

Binary	Decimal	Octal	Hex.	Binary	Decimal	Octal	Hex.
0000	0	0	0	1000	8	10	8
0001	1	1	1	1001	9	11	9
0010	2	2	2	1010	10	12	A
0011	3	3	3	1011	11	13	B
0100	4	4	4	1100	12	14	C
0101	5	5	5	1101	13	15	D
0110	6	6	6	1110	14	16	E
0111	7	7	7	1111	15	17	F

Addition of Binary Numbers

C		
X		
$\frac{\mathrm{Y}}{\mathrm{X}+\mathrm{Y}}$	$+\begin{array}{r}011111110 \\ 01111111 \\ \hline\end{array}$	$\begin{array}{r}63 \\ \hline 190\end{array}$

Addition of Binary Numbers (continued)

\(\begin{array}{crr}C \& \& 001011000

\mathrm{X} \& 174 \& 10101101

\frac{\mathrm{Y}}{\mathrm{X}+\mathrm{Y}} \& +\frac{44}{217} \&\)	+00101100
11011001	\end{array}

\($$
\begin{array}{ccr}C \\
\mathrm{X} & & 170 \\
\frac{\mathrm{Y}}{} & \begin{array}{r}000000000 \\
\hline \mathrm{X}+\mathrm{Y} \\
\hline\end{array}
$$ \begin{array}{r}10101010

\hline 255\end{array} \&\)| 01010101 |
| :--- |
| 11111111 |\end{array}

Addition of Hexadecimal Numbers

C	1100	1	1	0	0
X	19B9 $_{16}$	1	9	11	9
Y	$\mathrm{C} 7 \mathrm{E6}_{16}$	12	7	14	6
$\mathrm{X}+\mathrm{Y}$	${\mathrm{E} 19 \mathrm{~F}_{16}}^{14}$	14	17	25	15
		14	$16+1$	$16+9$	15
		E	1	9	F

Complements

There are several different ways in which we can represent negative numbers:

- Signed-Magnitude Representation
- 1s Complement Representation
- 2s Complement Representation

Signed-Magnitude Representation

- In signed-magnitude representation, the sign bit is set to ' 1 ' if negative and cleared to ' 0 ' if positive:

6		
+13		
19		00000110
		00001101
-6	10000110	
++13	$\frac{00001101}{10010011}(=-19)$	

1s Complement Representation

- In signed-magnitude representation, the sign bit is set to ' 1 ' if negative and the other bits are also reversed.

6	00000110
+13	00001101
19	00010011
-6	11111001
+ +13	00001101
+ 7	00000110

2s Complement Representation

- In 2 s complement representation, we subtract the absolute value from 2^{n} :

$$
\begin{array}{rl}
100000000 \\
\begin{aligned}
00000110 \\
\hline 11111010
\end{aligned} & \\
-6 & \\
++13 \\
\hline+7 & 1
\end{array}
$$

2s Complement Representation (continued)

- The 2 s complement representation can also be found by reversing the bits (into 1 s complement) and then adding 1 :

$$
\begin{aligned}
6=>00000110 & =>11111001 \\
& +\frac{1}{11111010}
\end{aligned}
$$

$$
\begin{aligned}
43=>00101011= & 11010100 \\
& +\frac{1}{11010101}
\end{aligned}
$$

Overflow

- If an addition operation produces a result that exceeds our number system's range, overflow has occurred.
- Addition of two numbers of the same sign produces overflow; addition two numbers of opposite sign cannot cause overflow.

$$
\begin{aligned}
& \begin{array}{lll}
-3 & 1101 & +5 \\
0101
\end{array} \\
& \frac{+6}{+3} \quad \frac{0110}{10011=+3} \quad \frac{+6}{+11} \frac{0110}{1011}=-5 \\
& \begin{array}{r}
-8 \\
-8 \\
\hline-16
\end{array} \\
& \begin{array}{l}
1000 \\
1000 \\
\hline 0000=0
\end{array} \\
& +7 \quad 0111 \\
& \frac{+7}{+14} \quad \frac{0111}{1110=-2}
\end{aligned}
$$

Subtraction

- Subtraction works in a similar fashion, but the borrow (an initial carry bit) is a ' 1 ':

Subtraction (continued)

$$
\begin{array}{rrr}
& & 1 \\
+3 & 0011 & 0011 \\
--4 & -1100 \\
\hline-7 & & 1 \\
& & 10011 \\
\hline-3 & 1011 & 1011 \\
--4 & -1100 & \\
\hline-1
\end{array}
$$

Binary Multiplication

- Multiplication is repeated addition of the multiplicand, where the number of additions depends on the multiplier:

Partial Product Method

- It is more convenient to add each shifted multiplicand as it is created to a partial product:

Binary Division

Binary Representation of Decimal Numbers

$\frac{\text { Decimal }}{\text { Digit }}$	$\underline{\text { BCD (8421) }}$	$\underline{\mathbf{2 4 2 1}}$	$\underline{\text { Excess-3 }}$
0	0000	0000	0011
1	0001	0001	0100
2	0010	0010	0101
3	0011	0011	0110
4	0100	0100	0111
5	0101	1011	1000
6	0110	1100	1001
7	0111	1101	1010
8	1000	1110	1011
9	1001	1111	1100

Floating Point Representations

- The floating point representation of a number has two part:
fraction and an exponent:
$+6132.789=+0.6132789 \times 10^{4}$
- In general, a number can be expressed as
$\mathrm{mx} \mathrm{r}{ }^{\mathrm{e}}$
where m is the mantissa, r is the radix and e is the exponent.
- Because we know that computer always use binary numbers (radix $=2$), only m and e need to be represented.
- Therefore, we can represent 1001.11 using $\mathrm{m}=01001110$ and $\mathrm{e}=000100$ (because $1011.11=+0.101111 \times 2^{+4}$)

Floating Point Representations (continued)

- A floating-point number is normalized if the most significant place in the mantissa is nonzero.
- 350 is normalized
- 00035 is not normalized.
- 00011010 is not normalized, but 11010000 is normalized; this requires changing the exponent to 4 .
- The standard method of storing exponent is excess-64, where
- an exponent of 1000000 is zero
- an exponent of 1000011 is positive
- an exponent of 0110100 is negative.

Gray Codes

- Sometimes electromechanical applications of digital systems (machine tools, automotive brake systems and copiers) require a digital value that indicates a mechanical position.
- A standard binary code may see more than one bit change from one position to another, which could lead to an incorrect reading if mechanical assembly is imperfect.

Binary Code vs. Gray Code

Binary Code

Gray Code

ASCII representation of characters

- ASCII (American Standard Code for Information Interchange) is a numeric code used to represent characters.
- All characters are represented this way including:
- words (character strings)
- numbers
- punctuation
- control characters
- There are separate values for upper case and lower case characters:

A	65	z	122
B	66	blank	32
Z	90	$\$$	52
a	97	0	48
b	98	9	57

Control Codes

- ASCII (a 7-bit code) has $2^{7}=128$ values.
- We only need 62 for alphanumeric characters. Even after accounting for common punctuation, there are far more available code values than we need. What do we use them for?
- Control codes include DEL (for delete), NUL (for null). STX (Start of Text), CR (for carriage return), etc.

Error Detection Codes

- An error is a corruption of the data from its correct state.
- There are several codes that allow use to detect an error. These include:
- Parity
- CRC
- Checksum

Parity

- Parity is an extra bit appended to our data which indicates whether the data bits add up to an even (for even parity) or odd (for odd parity) value.

Parity Generation

Message (xyz)	$\underline{\text { P(odd) }}$	P(even)
000	1	0
001	0	1
010	1	0
011	0	1
100	1	0
101	0	1
110	1	0
111	0	1

CRC

- CRC (Cyclic Redundancy \boldsymbol{C} heck) - is an error detecting code.
- CRC can spot single-bit errors as well as clustered error.

Checksum

- Checksum codes involve adding bytes modulo 256.
- This allows checksums to spot one-byte errors.
- Checksums can use other modulos which would allow for spotting different errors as well.

