
Systems I: Computer

Organization and Architecture

Lecture 2: Number Systems and

Arithmetic

Number Systems - Base 10

The number system that we use is base 10:

1734 = 1000 + 700 + 30 + 4

= 1x1000 + 7x100 + 3x10 + 4x1

= 1x103 + 7x102 + 3x101 + 4x100

724.5 = 7x100 + 2x10 + 4x1 + 5x0.1

= 7x102 + 2x101 + 4x100 + 5x10-1

Why use base 10?

Number Systems - Base 2

For computers, base 2 is more convenient (why?)

100112 = 1x16 + 0x8 + 0x4 + 1x2 + 1x1 = 1910

1000102 = 1x32 + 0x16 + 0x8 + 0x4 + 1x2 + 0x1 = 3410

101.0012 = 1x4 + 0x2 + 1x1 + 0x0.5 + 0x0.25 + 1x0.125

= 5.12510

Example - 11010112 = ?

101101112 = ?

10100.11012 = ?

Number Systems - Base 16

Hexadecimal (base 16) numbers are commonly used

because it is convert them into binary (base 2) and vice

versa.

8CE16 = 8x256 + 12x16 + 14x1

= 2048 + 192 + 14

= 2254

3F9 = 3x256 + 15x16 + 9x1

= 768 + 240 + 9 = 1017

Number Systems - Base 16 (continued)

Base 2 is easily converted into base 16:

1000110011102 = 1000 1100 1110 = 8 C E 16

111011011101010012 = 1 1101 1011 1010 1001 = 1 D B A 916

101100010100000101112 = ?16

1011010100101110112 = ?16

Number Systems - Base 16 (continued)

Converting base 16 into base 2 works the same way:

F3A516 = 1111 0011 1010 01012

76EF16 = 0111 0110 1110 11112

AB3D16 = ?2

15C.3816 = ?2

Number Systems – Base 8

Octal (base 8) numbers used to be commonly used because it

is convert them into binary (base 2) and vice versa.

However, the absence of 8 and 9 is not obvious enough

and they were frequently mistaken for decimal values.

43168 = 4 x 83 + 3 x 82 + 1 x 81 + 6 x 80

= 4 x 512 + 3 x 64 + 1 x 8 + 6 x 1

= 2048 + 192 + 8 + 6

= 225410

Number Systems - Base 8 (continued)

Base 2 is easily converted into base 8:

1000110011102 = 100 011 001 110 = 4 3 1 68

111011011101010012 = 11 101 101 110 101 001 = 3556518

101100010100000101112 = ?8

1011010100101110112 = ?8

Number Systems - Base 8 (continued)

Converting base 8 into base 2 works the same way:

363518 = 11 110 011 101 001 012

733578 = 111 011 011 101 1112

24368 = ?2

15738 = ?2

Converting From Decimal to Binary

19

9 R 1

4 R 1

2 R 0

1 R 0

0 R 1

100112

Converting From Decimal to Hexadecimal

23716

14 R 13

0 R 14

ED16

Converting From Decimal to Octal

2378

29 R 5

3 R 5

0 R 3

3558

Binary, Octal, Decimal and Hexadecimal Equivalents

1001

1010

1011

1100

1101

1111

1110

10000000

0001

0010

0011

0100

0101

0110

0111

Binary BinaryDecimal DecimalHex. Hex.

0

1

2

3

4

5

6

7

1

2

3

4

5

6

7

0 8

9

10

11

12

13

14

15

8

A

B

C

D

9

F

E

Octal

0

1

2

3

4

5

6

7

Octal

10

11

12

13

14

15

16

17

Addition of Binary Numbers

C

X

Y

X+Y

190

141

331

+

101111000

10111110

10001101

101001011

+

C

X

Y

X+Y

127

63

190

+

011111110

01111111

00111111

10111110

+

Addition of Binary Numbers (continued)

C

X

Y

X+Y

174

44

217

+

001011000

10101101

00101100

11011001

+

C

X

Y

X+Y

170

85

255

+

000000000

10101010

01010101

11111111

+

Addition of Hexadecimal

Numbers
C

X

Y

X+Y

1100

19B916

C7E616

E19F16

1

1

12

14

14

E

1

9

7

17

16+1

1

0

11

14

25

16+9

9

0

9

6

15

15

F

Complements

There are several different ways in which we

can represent negative numbers:

• Signed-Magnitude Representation

• 1s Complement Representation

• 2s Complement Representation

Signed-Magnitude Representation

• In signed-magnitude representation, the sign bit is
set to ‘1’ if negative and cleared to ‘0’ if positive:

6 00000110

+13 00001101

19 00010011

-6 10000110

+ +13 00001101

+ 7 10010011 (= -19)

1s Complement Representation

• In signed-magnitude representation, the sign bit is
set to ‘1’ if negative and the other bits are also
reversed.

6 00000110

+13 00001101

19 00010011

-6 11111001

+ +13 00001101

+ 7 1 00000110 (= +6)

overflow bit

2s Complement Representation

• In 2s complement representation, we subtract the
absolute value from 2n:
100000000

00000110

11111010

-6 11111010

+ +13 00001101

+ 7 1 00000111 (= +7)

2s Complement Representation (continued)

• The 2s complement representation can also be
found by reversing the bits (into 1s complement)
and then adding 1:
6 => 00000110 =>11111001

+ 1

11111010

43 => 00101011 => 11010100

+ 1

11010101

Overflow

• If an addition operation produces a result that exceeds our
number system’s range, overflow has occurred.

• Addition of two numbers of the same sign produces
overflow; addition two numbers of opposite sign cannot
cause overflow.

-3 1101 +5 0101

+6 0110 +6 0110

+3 1 0011 = +3 +11 1011 = -5

-8 1000 +7 0111

-8 1000 +7 0111

-16 1 0000 = 0 +14 1110 = -2

Subtraction

• Subtraction works in a similar fashion, but the borrow (an

initial carry bit) is a ‘1’:

1

+4 0100 0100

- +3 - 0011 +1100

+1 1 0001

1

+3 0011 0011

- +4 - 0100 +1011

- 1 1 0001

initial carry

Subtraction (continued)

1

+3 0011 0011

- - 4 - 1100 +0011

- 7 0111

1

-3 1011 1011

- -4 - 1100 +0011

-1 1111

Binary Multiplication

• Multiplication is repeated addition of the

multiplicand, where the number of additions

depends on the multiplier:

11 1011

x 13 1101

33 1011

11 0000

143 1011

1011

10001111

multiplicand

multiplier

shifted multiplicands

product

Partial Product Method

• It is more convenient to add each shifted multiplicand as it

is created to a partial product:

1011 11

x 1101 x 13

0000 143

1011

01011

0000

001011

1011

0110111

1011

10001111

partial

products

shifted

multiplicands

Partial Product Method – Another Example

-5 1011

x -3 1101

00000

11011

111011

00000

1111011

11011

11100111

00101

00001111

shifted multiplicand

shifted and negated multiplicand

Binary Division

10011

1011 11011001

1011

0101

0000

1010

0000

10100

1011

10011

1011

1000

shifted divisorreduced divisor

remainder

Binary Representation of Decimal Numbers

1100111110019

1011111010008

1010110101117

1001110001106

1000101101015

0111010001004

0110001100113

0101001000102

0100000100011

0011000000000

Excess-32421BCD (8421)Decimal

Digit

Floating Point Representations

• The floating point representation of a number has two part:

fraction and an exponent:

+6132.789 = +0.6132789 x 104

• In general, a number can be expressed as

m x re

where m is the mantissa, r is the radix and e is the

exponent.

• Because we know that computer always use binary

numbers (radix = 2), only m and e need to be represented.

• Therefore, we can represent 1001.11 using m = 01001110

and e = 000100 (because 1011.11 = +0.101111 x 2+4)

Floating Point Representations (continued)

• A floating-point number is normalized if the most

significant place in the mantissa is nonzero.

– 350 is normalized

– 00035 is not normalized.

– 00011010 is not normalized, but 11010000 is

normalized; this requires changing the exponent to 4.

• The standard method of storing exponent is

excess-64, where

– an exponent of 1000000 is zero

– an exponent of 1000011 is positive

– an exponent of 0110100 is negative.

Gray Codes

• Sometimes electromechanical applications of

digital systems (machine tools, automotive brake

systems and copiers) require a digital value that

indicates a mechanical position.

• A standard binary code may see more than one bit

change from one position to another, which could

lead to an incorrect reading if mechanical

assembly is imperfect.

Binary Code vs. Gray Code

000

001

010

011100

101

110

111 000

001

011

010110

111

110

100

Binary Code Gray Code

ASCII representation of characters

• ASCII (American Standard Code for Information Interchange) is a

numeric code used to represent characters.

• All characters are represented this way including:

– words (character strings)

– numbers

– punctuation

– control characters

• There are separate values for upper case and lower case characters:

A 65 z 122

B 66 blank 32

Z 90 $ 52

a 97 0 48

b 98 9 57

Control Codes

• ASCII (a 7-bit code) has 27 = 128 values.

• We only need 62 for alphanumeric
characters. Even after accounting for
common punctuation, there are far more
available code values than we need. What
do we use them for?

• Control codes include DEL (for delete),
NUL (for null). STX (Start of Text), CR
(for carriage return), etc.

Error Detection Codes

• An error is a corruption of the data from its

correct state.

• There are several codes that allow use to

detect an error. These include:

– Parity

– CRC

– Checksum

Parity

• Parity is an extra bit appended to our data

which indicates whether the data bits add up

to an even (for even parity) or odd (for odd

parity) value.

Parity Generation

10111

01110

10101

01100

10011

01010

10001

01000

P(even)P(odd)Message (xyz)

Odd Parity
x
y

z

x
y

z

P(odd)

CRC

• CRC (Cyclic Redundancy Check) – is an

error detecting code.

• CRC can spot single-bit errors as well as

clustered error.

Checksum

• Checksum codes involve adding bytes

modulo 256.

• This allows checksums to spot one-byte

errors.

• Checksums can use other modulos which

would allow for spotting different errors as

well.

