Systems I: Computer Organization and Architecture

Lecture 12: Floating Point Data

Floating Point Representation

- Numbers too large for standard integer representations or that have fractional components are usually represented in scientific notation, a form used commonly by scientists and engineers.
- Examples:
4.25×10^{1}
10^{-3}
-3.35×3
-1.42×10^{2}

Normalized Floating Point Numbers

- We are most interested in normalized floating-point numbers, a format which includes:
- sign
- significand $\quad(1.0 \leq$ Significand $<$ Radix $)$
- integer power of the radix

Examples of Normalized Floating Point Numbers

These are normalized:

- $+1.23456789 \times 10^{1}$
- $-9.987654321 \times 10^{12}$
- $+5.0 \times 10^{0}$

These are not normalized:

- $+11.3 \times 10^{3} \quad$ significand $>$ radix
- $-0.0002 \times 10^{7} \quad$ significand <1.0
- $-4.0 \times 10^{1 / 2} \quad$ exponent not integer

Converting From Binary To Decimal

$\mathbf{1 . 0 0 1 0 1}_{2}=1 \times 2^{0}+0 \times 2^{-1}+0 \times 2^{-2}+1 \times 2^{-3}$

$$
\begin{aligned}
& \quad+0 \times 2^{-4}+1 \times 2^{-5} \\
= & 1+0 / 2+0 / 4+1 / 8+0 / 16+1 / 32 \\
= & 1+0.125+0.03125 \\
= & \mathbf{1 . 5 6 2 5} \\
= & 37 / 32=1.5625
\end{aligned}
$$

Converting From Decimal To Binary

Let's start with $3.4625 \times 10^{1}=34.625$
Let's deal separately with the 34 (which equals 100010_{2})
$2 \times .625=1.25$ (save the integer part)
$2 \times .25=0.5$ (no integer part to save)
$2 \times .50=1.00$ (save the integer part)
Let's write them left to right in order:
$34.625_{10}=100010.101_{2}$

Converting From Decimal To Binary - Another Example

$$
1.23125 \times 10^{1}=12.3125
$$

$$
12_{10}=1100_{2}
$$

$$
2 \times .3125=0.625
$$

$$
2 \times .625=\mathbf{1} .25
$$

$$
2 \times .25=0.50
$$

$$
2 \times .50=\mathbf{1} .0
$$

$$
12.3125_{10}=1100.0101_{2}
$$

Normalizing Floating Point Data

Floating point data is normalized so that there is the significand is always one:
$100001.101_{2}=1.00001101 \times 2^{5}$
$1100.0101_{2}=1.1000101 \times 2^{3}$
Since the most significant bit is always 1, we can assume that it is implied and that we do not actually have to represent it.

Biased Exponents

- Short floating point numbers uses 8-bits for the exponents, which we want to range from -128 to +127 .
- A biased exponent uses some value other than 0 as the baseline, which must be subtracted to get the actual exponent value.
- Example (in short floating point):
- exponent $135=135-127=2^{8}$
- exponent $120=120-127=2^{-7}$

Representing Floating Point Values In Memory

There are three standard formats for representing floating-point numbers:

- 32-bit format (single-precision)
- 64-bit format (double-precision)
- 80-bit format (extended precision)

Short Floating Point Numbers

> Representing Values
> $-12.4375_{10}=-1100.0111_{2}$

Short:

$11000001010001110000 \ldots 0000_{2}$
$=\mathrm{C} 1470000 \mathrm{~h}$

Long Floating Point Numbers

Representing Values

$-12.4375_{10}=-1100.0111_{2}$

$110000000010100011100000 \ldots 0000_{2}$
$=$ C028E00000000000h

Extended Floating Point Numbers

Representing Values

$-12.4375_{10}=-1100.0111_{2}$

Extended: $-1.10001110000 \ldots 0000_{2} \times 2^{3}+16383$
$11000000000000010 \quad 10001110000 \ldots 0000$
$1100000000000010110001110000 \ldots 0000_{2}$
$=\mathrm{C} 002 \mathrm{C} 700000000000000 \mathrm{~h}$

Specifying Floating Point Data In Assembly Language

- We can use the:
- dd (define doubleword) directive to allocate storage for single-precision floats
- dq (define quadword) to allocate storage for double-precision floats and
- dt (define tenbyte) for extended-precision floats.

Specifying Floating Point Data - An Example

- Allocating storage and initializing values

ShortOne	dd	1.0
LongOne	dq	1.0
Pi	dd	0.314159265 E 1
IntRate	$d t$	$13.25 \mathrm{E}-1$

Allocating storage without initializing:
Mass dd ?
CoefFric dq ?
Temp dt ?

Floating Point Operations

- Floating point operations include:
- moving and rounding data
- conversion
- addition
- subtraction
- multiplication
- division
- remainder
- comparison

Moving Floating Point Data

- Moving floating point data can be done using the standard mov instruction in Assembly language.
- If the source and destination are different length, care must be taken in conversion to ensure that exponent and significand are properly converted.

Data Conversion

- Integer and floating point data cannot be used interchangeably; data conversion is necessary and real-to-integer conversion is not without potential problems:
- Underflow - a magnitude too small to represent as an integer.
- Overflow - a magnitude too small to represent as an integer.
- Inexact result - a loss of all of part of the fractional part of the floating-point fvalue.

Floating Point Addition

- To add two floating point values, they have to be aligned so that they have the same exponent.
- After addition, the sum may need to be normalized.
- Potential errors include overflow, underflow and inexact results.
- Examples:
2.34×10^{3}
6.22×10^{8}
$\begin{array}{r} \\ +\quad 0.88 \times 10^{3} \\ \hline\end{array}$
$+3.93 \times 10^{8}$
3.22×10^{3}
$10.15 \times 10^{8}=1.015 \times 10^{8}$

Floating Point Subtraction

- Subtracting floating point values also requires re-alignment so that they have the same exponent.
- After subtraction, the difference may need to be normalized.
- Potential errors include overflow, underflow and inexact results, and the difference may have one signficant bit less than the operands..
- Examples:

$$
\begin{array}{cc}
2.34 \times 10^{3} & 6.44 \times 10^{4} \\
-\frac{-0.88 \times 10^{3}}{1.46 \times 10^{3}} & -6.23 \times 10^{4} \\
0.21 \times 10^{4} & =2.1 \times 10^{3}
\end{array}
$$

Floating Point Multiplication

- Multiplying floating point values does not requires realignment - realigning may lead to loss of significance.
- After multiplication, the product may need to be normalized.
- Potential errors include overflow, underflow and inexact results.
- Examples:

$$
2.4 \times 10^{-3}
$$

$\times \underline{6.3 \times 10^{2}}$

$$
15.12 \times 10^{1}=1.512 \times 10^{2}
$$

Floating Point Division

- Dividing floating point values does not requires re-alignment.
- After division, the (floating point) quotient may need to be normalized - there is no remainder
- Potential errors include overflow, underflow, inexact results and attempts to divide by zero.
- Examples:

$$
\begin{aligned}
1.86 \times 10^{13} \div 7.44 \times 10^{5}=\quad & 0.25 \times 10^{8} \\
& 2.5 \times 10^{7}
\end{aligned}
$$

Floating Point Remainder

- There is usually no remainder in floating point division, because the quotient can be a floating point value itself.
- Sometimes we want a remainder, i.e., the difference between the dividend and the product of the quotient rounded to the nearest integer) and the divisor:
- s REM $\mathrm{t}=\mathrm{s}-\mathrm{t} \times \mathrm{NINT}(\mathrm{s} / \mathrm{t})$
- Remainder will not produce inexact results, underflow or overflow but can lead to an attempt to divide by zero.

Floating Point Comparison

- There are usually three results that can happen as a result of floating point comparison:
- less than
- greater than
- equal to
- In some instances, there is a fourth result: unordered, which occurs if one of the values is the result of an arithmetic error.
- These errors can result from adding or subtracting infinite values and are called $\underline{N a N s}$ (for $\operatorname{Not} \underline{a}$ Number).

The Intel Floating Point Co-processors

- Early Intel processors (8088/8086, 80286, 80386) had no floating point capabilities; unless you wished to emulate floating point operations using software routines, you needed to add a coprocessor (8087, 80287, 80387).
- 80486 and Pentium family processors include a floating point unit with an architecture that is the same as the coprocessors.

The Intel Floating Point Unit

- The Floating Point Unit contains 13 registers:
- Eight 80-bit data registers (ST(0), ST(1), .., ST(7)) that are usually accessed as a stack with $\mathrm{ST}(0)$ representing the top of the stack.
- Three 16-bit registers, called the tag, control and status registers.
- Two 32-bit registers that serve as exception pointers.

Data Register

ST(0)
ST(1)
ST(2)
ST(3)
ST(4)
ST(5)
ST(6)
ST(7)
Bottom

Tag Register

$\operatorname{tag} 7$	$\operatorname{tag} 6$	$\operatorname{tag} 5$	$\operatorname{tag} 4$	$\operatorname{tag} 3$	$\operatorname{tag} 2$	$\operatorname{tag} 1$	$\operatorname{tag} 0$

tag	meaning
00	valid (finite nonzero number)
01	zero
10	invalid (infinite or NaN)
11	empty

Control Register

- The control register contains six exception masks and three control fields
- If one of the exception masks is cleared and that exception occurs, the program is suspended and the an interrupt is generated, which will either correct the problem is terminate the program.
- The control fields control rounding and the type of infinity used.

Floating Point Move Instructions

Floating point move instructions include:

- fld source- convert to ext. real and push on stack
- fild source - convert from integer and push
- fst dest - store (without popping)
- fstp dest - store and pop
- fist dest - convert to integer and store
- fistp dest - convert to integer, store and pop
- fxch - exchange ST and ST(1)
- fld1 - push 1 on the stack
- fldz - push zero on the stack

Floating Point Arithmetic Instructions

- Floating point arithmetic instructions include:
- fadd Add
- fsub Subtract
- fsubr Subtract Reversed (minuend and subtrahrend are in reverse order)
- fmul Multiply
- fdiv Divide
- Without an operand, the operands are pooped from the stack and the result is pushed.
- With a single operand, the second operand is specified; the first operand the result are on the top of the stack

Special Floating Point Operations

- In addition to the standard arithmetic operations, there are a few that do not always have integer counterparts:
fchs - change sign (negation)
fabs - absolute value
frndint - round to nearest integer
fsqrt - square root
- In all cases, the operand is on the top of the stack

Using Comparison Instructions

- Comparison instructions set the status bits in the FPU control register. To use these as the basis for a conditional branch, we must load these values into the main flag register.
- We use the sequence:

```
fstsw StatusReg ; store status word in
                                    ; memory
mov ax, StatusReg ; Copy into AX register
sahf ; copy copy from AH to
    ; the flag register
```

StatusReg dw ?

Comparison Instructions

- The comparison instructions set the status bits in the FPU control register depending on the top two values in ST.
- The comparison instructions include:
- fcom compares ST with ST(1) or the operand
- fcomp compares ST with ST(1) or the operand (and pops ST)
- ficom compare ST with an integer operand
- ficomp compare ST with an integer operand and pops ST
- ftst compares ST to zero

Control Instructions

- Control instructions give the programmer control over the 8087 or FPU.
- They include:
- fwait Suspend 8086 (non-FPU) operations until 8087 (or FPU) is not busy
- finit Initialize tag, control and status registers.
- fstcw Save Control Word (where indicated by operand)

Example: Calculating A Square Root

- Newton's algorithm is frequently used to calculate square root.
- We start with an initial guess that X_{0} is the square root of A . We then find a revised guess X1 where:

$$
\mathrm{X}_{1}=\left(\mathrm{A} / \mathrm{X}_{0}+\mathrm{X}_{0}\right) / 2
$$

- We repeat this until the difference of X_{N} and $\mathrm{X}_{\mathrm{N}-1}$ is within an acceptably small.


```
; allocate stack space for local variables
    sub sp, 10
; Xnew = 1.0
    fld1
    fstp Xnew
REPEAT:
; Xold = Xnew
    fld Xnew
    fst Xold ; copy of Xold remains on
                                    ; stack
; Xnew = (A/Xold + Xold)
    fld A
    fld Xold
    fdiv
    fld Xold
    fadd
    fld Two
    fdiv
    fst Xnew ; copy of Xnew remains on
                                    ; stack
```

 ; test MaxRelErr * Xnew > abs (Xnew - Xold)
 fsub
 fabs
 fld MaxRelErr
 fld Xnew
 fmul
 fcompp
 fstsw TestResult
 fwait
 mov ax, TestResult
 sahf
 jna REPEAT
 ; UNTIL MaxRelErr * Xnew > abs (Xnew - Xold)
 ; return Xnew in FPU stack, restore the non-FPU stack
 fld Xnew
 add sp, 10
 pop bp
 ret 4
 newsqrt
endp
end newsqrt

