
Systems I: Computer
Organization and Architecture

Lecture 12: Floating Point Data

Floating Point Representation

• Numbers too large for standard integer
representations or that have fractional
components are usually represented in
scientific notation, a form used commonly
by scientists and engineers.

• Examples:
4.25 × 101 10-3

-3.35 × 3 -1.42 × 102

Normalized Floating Point Numbers

• We are most interested in normalized
floating-point numbers, a format which
includes:
– sign
– significand (1.0 ≤ Significand < Radix)
– integer power of the radix

Examples of Normalized Floating Point
Numbers

These are normalized:
• +1.23456789 × 101

• -9.987654321 × 1012

• +5.0 × 100

These are not normalized:
• +11.3 × 103 significand > radix
• -0.0002 × 107 significand < 1.0
• -4.0 × 10½ exponent not integer

Converting From Binary To
Decimal

1.001012 = 1 × 20 + 0 × 2-1 + 0 × 2-2 + 1 × 2-3

+ 0 × 2-4 + 1 × 2-5

= 1 + 0/2 + 0/4 + 1/8 + 0/16 + 1/32
= 1 + 0.125 + 0.03125
= 1.5625

= 37/32 = 1.5625

Converting From Decimal To Binary

Let’s start with 3.4625 × 101 = 34.625
Let’s deal separately with the 34 (which equals

1000102)
2 × .625 = 1.25 (save the integer part)
2 × .25 = 0.5 (no integer part to save)
2 × .50 = 1.00 (save the integer part)

Let’s write them left to right in order:
34.62510 = 100010.1012

Converting From Decimal To Binary
– Another Example

1.23125 × 101 = 12.3125
1210 = 11002

2 × .3125 = 0.625
2 × .625 = 1.25
2 × .25 = 0.50
2 × .50 = 1.0

12.312510 = 1100.01012

Normalizing Floating Point Data

Floating point data is normalized so that there is the
significand is always one:

100001.1012 = 1.00001101 × 25

1100.01012 = 1.1000101 × 23

Since the most significant bit is always 1, we can
assume that it is implied and that we do not
actually have to represent it.

Biased Exponents

• Short floating point numbers uses 8-bits for the
exponents, which we want to range from -128 to
+127.

• A biased exponent uses some value other than 0 as
the baseline, which must be subtracted to get the
actual exponent value.

• Example (in short floating point):
– exponent 135 = 135 - 127 = 28

– exponent 120 = 120-127 = 2-7

Representing Floating Point
Values In Memory

There are three standard formats for
representing floating-point numbers:

• 32-bit format (single-precision)
• 64-bit format (double-precision)
• 80-bit format (extended precision)

Short Floating Point Numbers
31 30 23 22 0

Sign bit
1 = negative
0 = positive

Biased
exponent

fraction
Most significant bit

Least significant bit

Implied 1 and binary point
of significand

Representing Values

-12.437510 = -1100.01112

Short: -1.10001110000… 00002 × 23 +127

1 10000010 10001110000… 0000

1100 0001 0100 0111 0000 … 00002

= C1470000h

Long Floating Point Numbers
63 62 52 51 0

Sign bit
1 = negative
0 = positive

Biased
exponent

fractionMost significant bit Least significant bit

Implied 1 and binary point
of significand

Representing Values

-12.437510 = -1100.01112

Long: -1.10001110000… 00002 × 23 +1023

1 10000000010 10001110000… 0000

1100 0000 0010 1000 1110 0000 … 00002

= C028E00000000000h

Extended Floating Point Numbers

79 78 64 63 0

Sign bit
1 = negative
0 = positive

Biased
exponent

fractionMost significant bit Least significant bit

Implied 1 and binary point
of significand

Representing Values

-12.437510 = -1100.01112

Extended: -1.10001110000… 00002 × 23 +16383

1 100000000000010 10001110000… 0000

1100 0000 0000 0010 1100 0111 0000 … 00002

= C002C700000000000000h

Specifying Floating Point Data In
Assembly Language

• We can use the:
– dd (define doubleword) directive to allocate

storage for single-precision floats
– dq (define quadword) to allocate storage for

double-precision floats and
– dt (define tenbyte) for extended-precision

floats.

Specifying Floating Point Data - An Example

• Allocating storage and initializing values
ShortOne dd 1.0
LongOne dq 1.0
Pi dd 0.314159265E1
IntRate dt 13.25E-1

Allocating storage without initializing:
Mass dd ?
CoefFric dq ?
Temp dt ?

Floating Point Operations

• Floating point operations include:
– moving and rounding data
– conversion
– addition
– subtraction
– multiplication
– division
– remainder
– comparison

Moving Floating Point Data

• Moving floating point data can be done
using the standard mov instruction in
Assembly language.

• If the source and destination are different
length, care must be taken in conversion to
ensure that exponent and significand are
properly converted.

Data Conversion

• Integer and floating point data cannot be used
interchangeably; data conversion is necessary and
real-to-integer conversion is not without potential
problems:
– Underflow – a magnitude too small to represent as an

integer.
– Overflow – a magnitude too small to represent as an

integer.
– Inexact result – a loss of all of part of the fractional part

of the floating-point fvalue.

Floating Point Addition

• To add two floating point values, they have to be
aligned so that they have the same exponent.

• After addition, the sum may need to be
normalized.

• Potential errors include overflow, underflow and
inexact results.

• Examples:
2.34 × 103 6.22× 108

+ 0.88 × 103 + 3.93 ×108

3.22 × 103 10.15 ×108 = 1.015 ×108

Floating Point Subtraction

• Subtracting floating point values also requires re-alignment
so that they have the same exponent.

• After subtraction, the difference may need to be
normalized.

• Potential errors include overflow, underflow and inexact
results, and the difference may have one signficant bit less
than the operands..

• Examples:
2.34 × 103 6.44 × 104

-0.88 × 103 - 6.23 ×104

1.46 × 103 0.21 ×104 = 2.1×103

Floating Point Multiplication

• Multiplying floating point values does not requires re-
alignment - realigning may lead to loss of significance.

• After multiplication, the product may need to be
normalized.

• Potential errors include overflow, underflow and inexact
results.

• Examples:
2.4 × 10-3

× 6.3 × 102

15.12 ×101 = 1.512×102

Floating Point Division

• Dividing floating point values does not requires
re-alignment.

• After division, the (floating point) quotient may
need to be normalized – there is no remainder

• Potential errors include overflow, underflow,
inexact results and attempts to divide by zero.

• Examples:
1.86 × 1013 ÷ 7.44 × 105 = 0.25 × 108

2.5 × 107

Floating Point Remainder

• There is usually no remainder in floating point
division, because the quotient can be a floating
point value itself.

• Sometimes we want a remainder , i.e., the
difference between the dividend and the product
of the quotient rounded to the nearest integer) and
the divisor:

• s REM t = s – t × NINT(s/t)
• Remainder will not produce inexact results,

underflow or overflow but can lead to an attempt
to divide by zero.

Floating Point Comparison

• There are usually three results that can happen as a
result of floating point comparison:
– less than
– greater than
– equal to

• In some instances, there is a fourth result:
unordered, which occurs if one of the values is the
result of an arithmetic error.

• These errors can result from adding or subtracting
infinite values and are called NaNs (for Not a
Number).

The Intel Floating Point Co-processors

• Early Intel processors (8088/8086, 80286, 80386)
had no floating point capabilities; unless you
wished to emulate floating point operations using
software routines, you needed to add a co-
processor (8087, 80287, 80387).

• 80486 and Pentium family processors include a
floating point unit with an architecture that is the
same as the coprocessors.

The Intel Floating Point Unit

• The Floating Point Unit contains 13 registers:
– Eight 80-bit data registers (ST(0), ST(1), ..,

ST(7)) that are usually accessed as a stack with
ST(0) representing the top of the stack.

– Three 16-bit registers, called the tag, control
and status registers.

– Two 32-bit registers that serve as exception
pointers.

Data Register

ST(0)
ST(1)
ST(2)
ST(3)

ST(5)
ST(6)
ST(7)

ST(4)

Top

Bottom

Tag Register

tag 3tag 5tag 7 tag 1 tag 0tag 2tag 4tag 6

empty11

invalid (infinite or NaN)10

zero01

valid (finite nonzero
number)

00
meaningtag

Control Register

• The control register contains six exception masks
and three control fields

• If one of the exception masks is cleared and that
exception occurs, the program is suspended and
the an interrupt is generated, which will either
correct the problem is terminate the program.

• The control fields control rounding and the type of
infinity used.

Floating Point Move Instructions

Floating point move instructions include:
• fld source– convert to ext. real and push on stack
• fild source – convert from integer and push
• fst dest – store (without popping)
• fstp dest – store and pop
• fist dest – convert to integer and store
• fistp dest – convert to integer, store and pop
• fxch – exchange ST and ST(1)
• fld1 – push 1 on the stack
• fldz – push zero on the stack

Floating Point Arithmetic Instructions

• Floating point arithmetic instructions include:
– fadd Add
– fsub Subtract
– fsubr Subtract Reversed (minuend and subtrahrend

are in reverse order)
– fmul Multiply
– fdiv Divide

• Without an operand, the operands are pooped from the
stack and the result is pushed.

• With a single operand, the second operand is specified; the
first operand the result are on the top of the stack

Special Floating Point Operations

• In addition to the standard arithmetic operations,
there are a few that do not always have integer
counterparts:
fchs - change sign (negation)
fabs - absolute value
frndint - round to nearest integer
fsqrt - square root

• In all cases, the operand is on the top of the stack

Using Comparison Instructions

• Comparison instructions set the status bits in the FPU
control register. To use these as the basis for a conditional
branch, we must load these values into the main flag
register.

• We use the sequence:
fstsw StatusReg ; store status word in

; memory
mov ax, StatusReg ; Copy into AX register
sahf ; copy copy from AH to

; the flag register
… … …
StatusReg dw ?

Comparison Instructions

• The comparison instructions set the status bits in the FPU
control register depending on the top two values in ST.

• The comparison instructions include:
– fcom compares ST with ST(1) or the operand

– fcomp compares ST with ST(1) or the operand (and
pops ST)

– ficom compare ST with an integer operand
– ficomp compare ST with an integer operand and pops ST
– ftst compares ST to zero

Control Instructions

• Control instructions give the programmer control
over the 8087 or FPU.

• They include:
– fwait Suspend 8086 (non-FPU) operations

until 8087 (or FPU) is not busy
– finit Initialize tag, control and status

registers.
– fstcw Save Control Word (where indicated by

operand)

Example: Calculating A Square Root

• Newton’s algorithm is frequently used to
calculate square root.

• We start with an initial guess that X0 is the
square root of A. We then find a revised
guess X1 where:

X1 = (A/X0 + X0) / 2
• We repeat this until the difference of XN

and XN-1 is within an acceptably small.

The Square Root Procedure
; procedure to find the square root using Newton's method
; Can be called by programs in higher languages as well
; Parameters and local values
A equ dword ptr [bp + 4]
Xold equ dword ptr [bp - 4]
Xnew equ dword ptr [bp - 8]
TestResult equ word ptr [bp - 10]

.data
Two dd 2.0
MaxRelErr dd 0.5E-6

.code
NewSqrt proc
; set up bp register to point to parameter

push bp
mov bp, sp

; allocate stack space for local variables
sub sp, 10

; Xnew = 1.0
fld1
fstp Xnew

REPEAT:
; Xold = Xnew

fld Xnew
fst Xold ; copy of Xold remains on

; stack
; Xnew = (A/Xold + Xold)

fld A
fld Xold
fdiv
fld Xold
fadd
fld Two
fdiv
fst Xnew ; copy of Xnew remains on

; stack

; test MaxRelErr * Xnew > abs(Xnew - Xold)
fsub
fabs
fld MaxRelErr
fld Xnew
fmul
fcompp

fstsw TestResult
fwait
mov ax, TestResult
sahf
jna REPEAT

; UNTIL MaxRelErr * Xnew > abs(Xnew - Xold)

; return Xnew in FPU stack, restore the non-FPU stack
fld Xnew
add sp, 10
pop bp
ret 4

newsqrt endp
end newsqrt

