
Systems I: Computer 
Organization and Architecture

Lecture 10: Microprogrammed 
Control

Microprogramming

• The control unit is responsible for initiating 
the sequence of microoperations that 
comprise instructions.
– When these control signals are generated by 

hardware, the control unit is hardwired .
– When these control signals originate in data 

stored in a special unit and constitute a program 
on the small scale, the control unit is 
microprogrammed .



Control memory

• The control function specifying a microoperation is a 
binary variable whose active state could be either 1 or 0.
– In the variable’s active state, the microoperation is 

executed.
– The string of control variables which control the 

sequence of microoperations is called a control word.
• The microoperations specified in a control word is called a 

microinstruction.
– Each microinstruction specifies one or more 

microoperations that is performed.
• The control unit coordinates stores microinstruction in its 

own memory (usually ROM) and performed the necessary 
steps to execute the sequences of microinstructions (called 
microprograms).

The Microprogrammed Control Unit

• In a microprogrammed processor, the 
control unit consists of:
– Control address register – contains the address 

of the next microinstruction to be executed.
– Control data register – contains the 

microinstruction to be executed.
– The sequencer – determines the next address 

from within control memory
– Control memory – where microinstructions are 

stored.



Microprogrammed Control Organization
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• The sequencer generates a new address  by:
– incrementing the CAR
– loading the CAR with an address from control 

memory.
– transferring an external address

or
– loading an initial address to start the control 

operations.



Address Sequencing

• Microinstructions are usually stored in groups 
where each group specifies a routine, where each 
routine specifies how to carry out an instruction.

• Each routine must be able to branch to the 
next routine in the sequence.

• An initial address is loaded into the CAR when 
power is turned on; this is usually the address of 
the first microinstruction in the instruction fetch 
routine.

• Next, the control unit must determine the effective 
address of the instruction.

Mapping
• The next step is to generate the microoperations 

that executed the instruction.  
– This involves taking the instruction’s opcode 

and transforming it into an address for the the 
instruction’s microprogram in control memory.  
This process is called mapping.

– While microinstruction sequences are usually 
determined by incrementing the CAR, this is 
not always the case.  If the processor’s control 
unit can support subroutines in a microprogram, 
it will need an external register for storing 
return addresses.



Addressing Sequencing (continued)

• When instruction execution is finished, control must be 
return to the fetch routine.  This is done using an 
unconditional branch.

• Addressing sequencing capabilities of  control memory 
include:
– Incrementing the CAR
– Unconditional and conditional branching (depending 

on status bit).
– Mapping instruction bits into control memory 

addresses
– Handling subroutine calls and returns.
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Conditional Branching

• Status bits
– provide parameter information such as the 

carry-out from the adder, sign of a number, 
mode bits of an instruction, etc.

– control the conditional branch decisions made 
by the branch logic together with the field in 
the microinstruction that specifies a branch 
address.

Branch Logic
• Branch Logic - may be implemented in one of several 

ways:
– The simplest way is to test the specified condition and 

branch if the condition is true; else increment the 
address register.

– This is implemented using a multiplexer:
• If the status bit is one of eight status bits, it is 

indicated by a 3-bit select number.
• If the select status bit is 1, the output is 0; else it is 0.
• A 1 generates the control signal for the branch; a 0 

generates the signal to increment the CAR.
• Unconditional branching occurs by fixing the status bit as 

always being 1.



Mapping of Instruction

• Branching to the first word of a 
microprogram is a special type of branch.  
The branch is indicated by the opcode of the 
instruction.

• The mapping scheme shown in the figure 
allows for four microinstruction as well as 
overflow space from 1000000 to 1111111.

Mapping From Instruction Code To 
Microoperation Address

1  0  1  1 address

0  1  0  1  1  0  0

Mapping bits:
0   x x x x 0  0

Microinstruction
addresss:



Subroutines

• Subroutine calls are a special type of 
branch where we return to one 
instruction below the calling 
instruction.
– Provision must be made to save the return 

address, since it cannot be written into 
ROM.
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Computer Instructions

I Opcode Address

10 0111415

AC ← M[EA],
M[EA]← AC

0011EXCHANGE

M[EA] ← AC0010STORE

IF (AC > 0)

THEN PC ← EA

0001BRANCH

AC← AC + M[EA]0000ADD

DescriptionOpcodeSymbol

Microinstruction Code Format (20 bits)

F2F1 F3 CD BR AD

F1, F2, F3 : Microoperation Field

CD: Condition For Branching

BR: Branch Field

AD: Address Field



Symbols and Binary Code For 
Microinstruction Fields

WRITEM[AR] ← DR111

PCTARAR ← PC110

DRTARAR ← DR(0-10)101

DRTACAC ← DR100

INCACAC ← AC + 1011

CLRACAC ← 0010

ADDAC ← AC + DR001

NOPNone000

SymbolMicrooperationF1

Symbols and Binary Code For 
Microinstruction Fields (continued)

PCTDRDR(0-10) ← PC111

INCDRDR ← DR + 1110

ACTDRDR ← AC101

READDR ← M[AR]100

ANDAC ← AC ∧ DR011

ORAC ← AC ∨ DR010

SUBAC ← AC- DR001

NOPNone000

SymbolMicrooperationF2



Symbols and Binary Code For 
Microinstruction Fields (continued)

Reserved111

ARTPCPC ← AR110

INCPCPC ← PC + 1101

SHRAC ← shr AC100

SHLAC ← shl AC011

COMAC ← AC’010

XORAC ← AC ⊕ DR001

NOPNone000

SymbolMicrooperationF3

Symbols and Binary Code For 
Microinstruction Fields (continued)

Zero value in ACZAC = 011

Sign bit of ACSAC(15)10

Indirect Address 
bit

IDR(15)01

Unconditional 
Branch

UAlways = 100

CommentsSymbolConditionCD



Symbols and Binary Code For Microinstruction 
Fields (continued)

CAR(2-5) ← DR(11-14), CAR(0, 1, 6) ← 0MAP11

CAR ← SBR (return from subroutine)RET10

CAR ←AR, SBR ← CAR + 1 if cond. = 1
CAR←CAR + 1 if condition = 0

CAL01

CAR ←AR if condition = 1
CAR←CAR + 1 if condition = 0

JMP00

FunctionSymbolBR

Symbolic Microinstructions

• It is possible to create a symbolic language for microcode that is 
machine-translatable to binary code.

• Each line define a symbolic microinstruction with each column 
defining one of five fields:
– Label - Either blank or a name followed by a colon (indicates a 

potential branch)
– Microoperations - One, Two, Three Symbols, separated by 

commas (indicates that the microoperation being performed)
– CD - Either U, I, S or Z (indicates condition)
– BR - One of four two-bit numbers
– AD - A Symbolic Address, NEXT (address), RET, MAP (both of 

these last two converted to zeros by the assembler) (indicates the 
address of the next microinstruction)

• We will use the pseudoinstruction ORG to define the first instruction 
(or origin) of a microprogram, e.g., ORG 64 begins at 1000000.



Partial Symbolic Microprogram

Label Microoperations CD BR AD
ORG 0

ADD: NOP I CALL INDRCT
READ U JMP NEXT
ADD U JMP FETCH

ORG 4
BRANCH: NOP S JMP OVER

NOP U JMP FETCH
OVER: NOP I CALL INDRCT

ARTPC U JMP FETCH

ORG 8
STORE: NOP I CALL INDRCT

ACTDR U JMP NEXT
WRITE U JMP FETCH

Partial Symbolic MicroProgram (continued)

ORG 12
EXCHANGE: NOP I CALL INDRCT

READ U JMP NEXT
ARTDR, DRTACU JMP NEXT
WRITE U JMP FETCH

ORG 64
FETCH: PCTAR U JMP NEXT

READ, INCPC U JMP NEXT
DRTAC U MAP

INDRCT: READ U JMP NEXT
DRTAC U RET



Partial Binary Microprogram

Micro-
Rout ine Decimal Binary F 1 F 2 F 3 C D B R AD
ADD 0 0000000 000 000 000 0 1 01 1000011

1 0000001 000 100 000 0 0 00 0000010
2 0000010 001 000 000 0 0 00 1000000
3 0000011 000 000 000 0 0 00 1000000

BRANCH 4 0000100 000 000 000 1 0 00 0000110
5 0000101 000 000 000 0 0 00 1000000
6 0000110 000 000 000 0 1 01 1000011
7 0000111 000 000 110 0 0 00 1000000

S T O R E 8 0001000 000 000 000 0 1 01 1000011
9 0001001 000 101 000 0 0 00 0001010

10 0001010 111 000 000 0 0 00 1000000
11 0001011 000 000 000 0 0 00 1000000

E X C H A N G E 12 0001100 000 000 000 0 1 01 1000011
13 0001101 001 000 000 0 0 00 0001110
14 0001110 100 101 000 0 0 00 0001111
15 0001111 111 000 000 0 0 00 1000000

FETCH 64 1000000 000 000 000 0 0 00 1000001
65 1000001 000 100 000 0 0 00 1000010
66 1000010 000 000 000 0 0 11 0000000

INDRCT 67 1000011 000 100 000 0 0 00 1000100
68 1000100 000 000 000 0 0 10 0000000

Address Binary Microinstruct ion

Control Unit Design

• Each field of k bits allows for 2k 

microoperations.
• The number of control bits can be reduced 

by grouping mutually exclusive 
microoperations together.

• Each field requires its own decoder to 
produce the necessary control signals.



Decoding of Microoperation Fields
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Microprogram Sequencer

• The microprogram sequencer selects the next 
address in control memory from which a 
microinstruction is to be fetched.

• Depending on the condition and on the branching 
type, it will be:
– an external (mapped) address
– the next microinstruction
– a return from a subroutine
– the address indicated in the microinstruction.



Microprogram Sequencer For A Control Memory
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Input Logic Truth Table For A 
Microprogrammed Sequencer

011x1111

001x0101

11011010

00001010

01010000

00000000

LS0S1TI0I1

BR Field Input MUX 1 Load SBR

Next address

Specified addr.

Subroutine ret.

Ext. addr.


