Systems |: Computer
Organization and Architecture

L ecture 10: Microprogrammed
Control

Microprogramming

» The control unit isresponsible for initiating
the sequence of microoperations that
compriseinstructions.

— When these control signals are generated by
hardware, the control unit is hardwired.

— When these control signals originate in data
stored in a specia unit and constitute a program
on the small scale, the control unit is
microprogrammed.

Control memory

» The control function specifying a microoperation is a

binary variable whose active state could be either 1 or 0.

— In the variable’s active state, the microoperation is
executed.
— The string of control variables which control the
sequence of microoperations is called a control word.
The microoperations specified in a control word is called a
microinstruction.
— Each microinstruction specifies one or more
microoperations that is performed.
The control unit coordinates stores microinstruction in its
own memory (usually ROM) and performed the necessary

steps to execute the sequences of microinstructions (called
microprograms).

The Microprogrammed Control Unit

 In amicroprogrammed processor, the

control unit consists of:

— Control address register — contains the address
of the next microinstruction to be executed.

— Control data register —containsthe
mi croinstruction to be executed.

— The sequencer — determines the next address
from within control memory

— Control memory — where microinstructions are
stored.

Microprogrammed Control Organization

External Control
in word
pUt_, Next -address Control Control Control |5

generator »| address » Memory » data
—>{ (sequencer) register (ROM) register
Next -address information §‘

Seguencer

* The sequencer generates a new address by:
— incrementing the CAR

— loading the CAR with an address from control
memory.

—transferring an external address
or

—loading an initial address to start the control
operations.

Address Sequencing

Microinstructions are usualy stored in groups
where each group specifies a routine, where each
routine specifies how to carry out an instruction.

» Each routine must be able to branch to the
next routine in the sequence.

Aninitial addressisloaded into the CAR when
power isturned on; thisis usually the address of

the first microinstruction in the instruction fetch
routine.

Next, the control unit must determine the effective
address of the instruction.

Mapping

» The next step is to generate the microoperations
that executed the instruction.

— Thisinvolves taking the instruction' s opcode
and transforming it into an address for the the
Instruction’ s microprogram in control memory.
This process is called mapping.

— While microinstruction sequences are usually
determined by incrementing the CAR, thisis
not always the case. If the processor' s control
unit can support subroutines in a microprogram,
it will need an external register for storing
return addresses.

Addressing Sequencing (continued)

* When ingtruction execution is finished, control must be
return to the fetch routine. Thisis done using an
unconditional branch.

e Addressing sequencing capabilities of control memory
include:

— Incrementing the CAR

— Unconditional and conditional branching (depending
on status bit).

— Mapping instruction bits into control memory
addresses

— Handling subroutine calls and returns.

Selection Of Address For Control Memory

Instruction Code

cond & -]
Branchaddress uncond. M apping subroutine return
bram: Logic l—l
extbddr. | nextmicroop .
Status| Branch | pux A4 . bd v Sl;ebrql;ttl ne
ors®| Logic |sgex ™| Multiplexers egister

Clock | Control Address Register

(CAR) Incrementer

{ r

Control Memory

Select a
Satus bit lMicrooperations

Conditional Branching

e Status bits

— provide parameter information such as the
carry-out from the adder, sign of a number,
mode bits of an instruction, etc.

— control the conditional branch decisions made
by the branch logic together with the field in
the microinstruction that specifies a branch
address.

Branch Logic

» Branch Logic - may be implemented in one of severa
ways:
— The simplest way is to test the specified condition and
branch if the condition is true; else increment the
address register.

— Thisisimplemented using a multiplexer:

* If the status bit is one of eight status bits, it is
indicated by a 3-bit select number.

* If the select status bit is 1, the output is O; elseit isO.
* A 1 generates the control signal for the branch; a0
generates the signal to increment the CAR.
» Unconditional branching occurs by fixing the status bit as
alwaysbeing 1.

Mapping of Instruction

« Branching to the first word of a
microprogram is a special type of branch.
The branch isindicated by the opcode of the
instruction.

» The mapping scheme shown in the figure
allows for four microinstruction aswell as
overflow space from 1000000 to 1111111.

Mapping From Instruction Code To
Microoperation Address

1011 address

Mapping bits: ol xxxx loo

Microinstruction
0101100
addresss:

Subroutines

» Subroutine calls are a special type of
branch where we return to one
instruction below the calling
Instruction.

— Provision must be made to save the return

address, since it cannot be written into
ROM.

Computer Hardware Configuration

v v
MUX
10 ! 0
AR
Memory
> 2048 x 16
10 0
PC
v ¥
v > MUX
15 v 0
6 0 6 0 DR >
SBR CAR
v Vv ®
ALSU
Control memory
128x 20 15 v 0
AC
I

Computer Instructions

15 14 11 10 0
| | Opcode Address
Symbal Opcode Description
ADD 0000 AC- AC + M[EA]
BRANCH 0001 IF (AC > 0)
THEN PC - EA
STORE 0010 M[EA] - AC
EXCHANGE 0011 AC- MI[EA],
M[EA]- AC

Microinstruction Code Format (20 bits)

F1 F2 F3 CD| BR AD

F1, F2, F3 : Microoperation Field
CD: Condition For Branching
BR: Branch Field

AD: AddressField

Symbols and Binary Code For
Microinstruction Fields

E1 Microoperation Symbol

000 None NOP

001 AC- AC+ DR ADD

010 AC- 0 CLRAC

011 AC- AC+1 INCAC

100 AC- DR DRTAC

101 AR - DR(0-10) DRTAR

110 AR- PC PCTAR

111 M[AR] - DR WRITE

Symbols and Binary Code For

Microinstruction Fields (continued)

| Microoperation Symbol

000 None NOP

001 AC- AC-DR SUB

010 AC- ACU DR OR

011 AC- ACUDR AND

100 DR- M[AR] READ

101 DR- AC ACTDR

110 DR- DR+1 INCDR

111 DR(0-10) - PC PCTDR

Symbols and Binary Code For
Microinstruction Fields (continued)

B3 Microoperation Symbol
000 None NOP
001 AC- ACADR XOR
010 AC- AC COM
011 AC- shl AC SHL
100 AC- shrAC SHR
101 PC- PC+1 INCPC
110 PC- AR ARTPC
111 Reserved

Symbols and Binary Code For
Microinstruction Fields (continued)

CD |Condition |Symboal Comments

00 |Always=1 |U Unconditiona
Branch

01 |DR(15) I Indirect Address
bit

10 |AC(15) S Sign bit of AC

11 |AC=0 Z Zerovduein AC

Symbols and Binary Code For Microinstruction

Fields (continued)
BR | Symbol |Function
00 |IMP CAR - ARIif condition=1
CAR-~ CAR + 1if condition=0
01 |CAL CAR- AR,SBR- CAR+1ifcond. =1
CAR- CAR + 1if condition=0
10 |RET CAR - SBR (return from subroutine)
11 |MAP |CAR(2-5) - DR(11-14), CAR(0,1,6)- 0

Symbolic Microinstructions

It is possible to create a symbolic language for microcode thatis
machine-translatable to binary code.

Each line define a symbolic microinstruction with each column
defining one of fivefields:

L abel - Either blank or a name followed by a colon (indicates a
potential branch)

Microoperations - One, Two, Three Symbols, separated by
commas (indicates that the microoperation being performed)
CD - Either U, I, Sor Z (indicates condition)

BR - One of four two-bit numbers

AD - A Symbolic Address, NEXT (address), RET, MAP (both of
these last two converted to zeros by the assembler) (indicates the
address of the next microinstruction)

Wewill use the pseudoinstruction ORG to define thefirst instruction
(or origin) of amicroprogram, e.g., ORG 64 begins at 1000000.

Partial Symbolic Microprogram

L abel MicrooperationsCD BR AD
ORGO

ADD: NOP I CALL
READ U IMP NEXT
ADD U IMP FETCH
ORG4

BRANCH: NOP S IMP OVER
NOP U IMP FETCH

OVER: NOP I CALL
ARTPC U IMP FETCH
ORG S8

STORE: NOP I CALL
ACTDR U IMP NEXT
WRITE U IMP FETCH

Partial Symbolic MicroProgram (continued)

EXCHANGE:

FETCH:

INDRCT:

ORG 12

NOP I
READ U
ARTDR, DRTACU
WRITE U

ORG 64
PCTAR
READ, INCPC
DRTAC
READ
DRTAC

cCcccc

CALL
JMP
JMP
JMP

JMP
JMP
MAP
JMP
RET

INDRCT
NEXT
NEXT
FETCH

NEXT
NEXT

NEXT

Partial Binary Microprogram

Address Binary Microinstruction
Micro-
Routine Decimal | Binary F1 F2 F3 CD BR AD
ADD 0[0000000 000 000 000 01 01 1000011
1] 0000001 000 100 000 00 00 0000010
2] 0000010 001 000 000 00 00 1000000
3[0000011 000 000 000 00 00 1000000
BRANCH 4(0000100 000 000 000 10 00 0000110
5(0000101 000 000 000 00 00 1000000
6] 0000110 000 000 000 01 01 1000011
7(0000111 000 000 110 00 00 1000000
STORE 8[0001000 000 000 000 01 01 1000011
9[/0001001 000 101 000 00 00 0001010
10] 0001010 111 000 000 00 00 1000000
11(0001011 000 000 000 00 00 1000000
EXCHANGE 12) 0001100 000 000 000 01 01 1000011
13(0001101 001 000 000 00 00 0001110
14] 0001110 100 101 000 00 00 0001111
15[0001111 111 000 000 00 00 1000000
FETCH 64| 1000000 000 000 000 00 00 1000001
65] 1000001 000 100 000 00 00 1000010
66(1000010 000 000 000 00 11 0000000
INDRCT 67(1000011 000 100 000 00 00 1000100
68| 1000100 000 000 000 00 10 0000000

Control Unit Design

 Eachfield of k bits allows for 2X
microoperations.

* The number of control bits can be reduced

by grouping mutually exclusive
microoperations together.

» Each field requiresits own decoder to
produce the necessary control signals.

Decoding of Microoperation Fields

b LTy LT
3 x 8 decoder 3 x 8 decoder 3 x 8 decoder
76543210 76543210 76543210
VYol [AmH VIRV Y VLY
ADD —>
DRTAC iq ALSU
[ad E(: From From
< E PC DR(0-10)
8 o L L R #
Sdet [- Load AC
Multiplexers
% —p AR Clock
Load

Microprogram Sequencer

» The microprogram sequencer selects the next
address in control memory from which a
microinstruction is to be fetched.

* Depending on the condition and on the branching
type, it will be:

— an externa (mapped) address

— the next microinstruction

— areturn from a subroutine

— the address indicated in the microinstruction.

Microprogram Sequencer For A Control Memory

External
(MAP)
1M
Ry 3210
> 1o Input - A
>l Logic 1S MUX1 SBR
|—> T S
L Test
IS - mMux2 v | ncremental
z—»| Select cioert CAR
Control memory
Microops CD BR AD
| v v | ‘ \4 v
Input Logic Truth Table For A
Microprogrammed Sequencer
BR Field [nput MUX1 Load SBR
1y Iy I S |S |L
0 0 0 0 0 0 0 0 Next address
0 0 0 0 1 0 1 0 Specified addr.
0 1 0 1 0 0 0 0
0 1 0 1 1 0 1 1
1 0 1 0 X 1 0 0 Subroutineret.
1 1 1 1 X 1 1 0 Ext. addr.

