
Systems I: Computer
Organization and Architecture

Lecture 10: Microprogrammed
Control

Microprogramming

• The control unit is responsible for initiating
the sequence of microoperations that
comprise instructions.
– When these control signals are generated by

hardware, the control unit is hardwired .
– When these control signals originate in data

stored in a special unit and constitute a program
on the small scale, the control unit is
microprogrammed .

Control memory

• The control function specifying a microoperation is a
binary variable whose active state could be either 1 or 0.
– In the variable’s active state, the microoperation is

executed.
– The string of control variables which control the

sequence of microoperations is called a control word.
• The microoperations specified in a control word is called a

microinstruction.
– Each microinstruction specifies one or more

microoperations that is performed.
• The control unit coordinates stores microinstruction in its

own memory (usually ROM) and performed the necessary
steps to execute the sequences of microinstructions (called
microprograms).

The Microprogrammed Control Unit

• In a microprogrammed processor, the
control unit consists of:
– Control address register – contains the address

of the next microinstruction to be executed.
– Control data register – contains the

microinstruction to be executed.
– The sequencer – determines the next address

from within control memory
– Control memory – where microinstructions are

stored.

Microprogrammed Control Organization

External
input Next -address

generator
(sequencer)

Control
address
register

Control
Memory
(ROM)

Control
data
register

Control
word

Next -address information

Sequencer

• The sequencer generates a new address by:
– incrementing the CAR
– loading the CAR with an address from control

memory.
– transferring an external address

or
– loading an initial address to start the control

operations.

Address Sequencing

• Microinstructions are usually stored in groups
where each group specifies a routine, where each
routine specifies how to carry out an instruction.

• Each routine must be able to branch to the
next routine in the sequence.

• An initial address is loaded into the CAR when
power is turned on; this is usually the address of
the first microinstruction in the instruction fetch
routine.

• Next, the control unit must determine the effective
address of the instruction.

Mapping
• The next step is to generate the microoperations

that executed the instruction.
– This involves taking the instruction’s opcode

and transforming it into an address for the the
instruction’s microprogram in control memory.
This process is called mapping.

– While microinstruction sequences are usually
determined by incrementing the CAR, this is
not always the case. If the processor’s control
unit can support subroutines in a microprogram,
it will need an external register for storing
return addresses.

Addressing Sequencing (continued)

• When instruction execution is finished, control must be
return to the fetch routine. This is done using an
unconditional branch.

• Addressing sequencing capabilities of control memory
include:
– Incrementing the CAR
– Unconditional and conditional branching (depending

on status bit).
– Mapping instruction bits into control memory

addresses
– Handling subroutine calls and returns.

Selection Of Address For Control Memory

Instruction Code

Mapping
Logic

Multiplexers

Control Address Register
(CAR)

Control Memory

Branch
Logic

Subroutine
Register
(SBR)

Incrementer

MUX
select

Status
bits

Select a
status bit

Branch address

Microoperations

Clock

subroutine return

ext addr. next microop

cond &
uncond.
bran.

Conditional Branching

• Status bits
– provide parameter information such as the

carry-out from the adder, sign of a number,
mode bits of an instruction, etc.

– control the conditional branch decisions made
by the branch logic together with the field in
the microinstruction that specifies a branch
address.

Branch Logic
• Branch Logic - may be implemented in one of several

ways:
– The simplest way is to test the specified condition and

branch if the condition is true; else increment the
address register.

– This is implemented using a multiplexer:
• If the status bit is one of eight status bits, it is

indicated by a 3-bit select number.
• If the select status bit is 1, the output is 0; else it is 0.
• A 1 generates the control signal for the branch; a 0

generates the signal to increment the CAR.
• Unconditional branching occurs by fixing the status bit as

always being 1.

Mapping of Instruction

• Branching to the first word of a
microprogram is a special type of branch.
The branch is indicated by the opcode of the
instruction.

• The mapping scheme shown in the figure
allows for four microinstruction as well as
overflow space from 1000000 to 1111111.

Mapping From Instruction Code To
Microoperation Address

1 0 1 1 address

0 1 0 1 1 0 0

Mapping bits:
0 x x x x 0 0

Microinstruction
addresss:

Subroutines

• Subroutine calls are a special type of
branch where we return to one
instruction below the calling
instruction.
– Provision must be made to save the return

address, since it cannot be written into
ROM.

Computer Hardware Configuration

MUX

AR

10 0

PC

10 0

Memory
2048 x 16

MUX

DR

15 0

AC

15 0

ALSU

CAR

6 0

SBR

6 0

Control memory
128 x 20

Computer Instructions

I Opcode Address

10 0111415

AC ← M[EA],
M[EA]← AC

0011EXCHANGE

M[EA] ← AC0010STORE

IF (AC > 0)

THEN PC ← EA

0001BRANCH

AC← AC + M[EA]0000ADD

DescriptionOpcodeSymbol

Microinstruction Code Format (20 bits)

F2F1 F3 CD BR AD

F1, F2, F3 : Microoperation Field

CD: Condition For Branching

BR: Branch Field

AD: Address Field

Symbols and Binary Code For
Microinstruction Fields

WRITEM[AR] ← DR111

PCTARAR ← PC110

DRTARAR ← DR(0-10)101

DRTACAC ← DR100

INCACAC ← AC + 1011

CLRACAC ← 0010

ADDAC ← AC + DR001

NOPNone000

SymbolMicrooperationF1

Symbols and Binary Code For
Microinstruction Fields (continued)

PCTDRDR(0-10) ← PC111

INCDRDR ← DR + 1110

ACTDRDR ← AC101

READDR ← M[AR]100

ANDAC ← AC ∧ DR011

ORAC ← AC ∨ DR010

SUBAC ← AC- DR001

NOPNone000

SymbolMicrooperationF2

Symbols and Binary Code For
Microinstruction Fields (continued)

Reserved111

ARTPCPC ← AR110

INCPCPC ← PC + 1101

SHRAC ← shr AC100

SHLAC ← shl AC011

COMAC ← AC’010

XORAC ← AC ⊕ DR001

NOPNone000

SymbolMicrooperationF3

Symbols and Binary Code For
Microinstruction Fields (continued)

Zero value in ACZAC = 011

Sign bit of ACSAC(15)10

Indirect Address
bit

IDR(15)01

Unconditional
Branch

UAlways = 100

CommentsSymbolConditionCD

Symbols and Binary Code For Microinstruction
Fields (continued)

CAR(2-5) ← DR(11-14), CAR(0, 1, 6) ← 0MAP11

CAR ← SBR (return from subroutine)RET10

CAR ←AR, SBR ← CAR + 1 if cond. = 1
CAR←CAR + 1 if condition = 0

CAL01

CAR ←AR if condition = 1
CAR←CAR + 1 if condition = 0

JMP00

FunctionSymbolBR

Symbolic Microinstructions

• It is possible to create a symbolic language for microcode that is
machine-translatable to binary code.

• Each line define a symbolic microinstruction with each column
defining one of five fields:
– Label - Either blank or a name followed by a colon (indicates a

potential branch)
– Microoperations - One, Two, Three Symbols, separated by

commas (indicates that the microoperation being performed)
– CD - Either U, I, S or Z (indicates condition)
– BR - One of four two-bit numbers
– AD - A Symbolic Address, NEXT (address), RET, MAP (both of

these last two converted to zeros by the assembler) (indicates the
address of the next microinstruction)

• We will use the pseudoinstruction ORG to define the first instruction
(or origin) of a microprogram, e.g., ORG 64 begins at 1000000.

Partial Symbolic Microprogram

Label Microoperations CD BR AD
ORG 0

ADD: NOP I CALL INDRCT
READ U JMP NEXT
ADD U JMP FETCH

ORG 4
BRANCH: NOP S JMP OVER

NOP U JMP FETCH
OVER: NOP I CALL INDRCT

ARTPC U JMP FETCH

ORG 8
STORE: NOP I CALL INDRCT

ACTDR U JMP NEXT
WRITE U JMP FETCH

Partial Symbolic MicroProgram (continued)

ORG 12
EXCHANGE: NOP I CALL INDRCT

READ U JMP NEXT
ARTDR, DRTACU JMP NEXT
WRITE U JMP FETCH

ORG 64
FETCH: PCTAR U JMP NEXT

READ, INCPC U JMP NEXT
DRTAC U MAP

INDRCT: READ U JMP NEXT
DRTAC U RET

Partial Binary Microprogram

Micro-
Rout ine Decimal Binary F 1 F 2 F 3 C D B R AD
ADD 0 0000000 000 000 000 0 1 01 1000011

1 0000001 000 100 000 0 0 00 0000010
2 0000010 001 000 000 0 0 00 1000000
3 0000011 000 000 000 0 0 00 1000000

BRANCH 4 0000100 000 000 000 1 0 00 0000110
5 0000101 000 000 000 0 0 00 1000000
6 0000110 000 000 000 0 1 01 1000011
7 0000111 000 000 110 0 0 00 1000000

S T O R E 8 0001000 000 000 000 0 1 01 1000011
9 0001001 000 101 000 0 0 00 0001010

10 0001010 111 000 000 0 0 00 1000000
11 0001011 000 000 000 0 0 00 1000000

E X C H A N G E 12 0001100 000 000 000 0 1 01 1000011
13 0001101 001 000 000 0 0 00 0001110
14 0001110 100 101 000 0 0 00 0001111
15 0001111 111 000 000 0 0 00 1000000

FETCH 64 1000000 000 000 000 0 0 00 1000001
65 1000001 000 100 000 0 0 00 1000010
66 1000010 000 000 000 0 0 11 0000000

INDRCT 67 1000011 000 100 000 0 0 00 1000100
68 1000100 000 000 000 0 0 10 0000000

Address Binary Microinstruct ion

Control Unit Design

• Each field of k bits allows for 2k

microoperations.
• The number of control bits can be reduced

by grouping mutually exclusive
microoperations together.

• Each field requires its own decoder to
produce the necessary control signals.

Decoding of Microoperation Fields

3 x 8 decoder

7 6 5 4 3 2 1 0

3 x 8 decoder

7 6 5 4 3 2 1 0

3 x 8 decoder

7 6 5 4 3 2 1 0

ALSU

AC

Multiplexers

AR

From
PC

From
DR(0-10)

Load

10Select Load

AND
ADD

DRTAC

D
R

T
A

R

PC
T

A
R

Clock

F1 F2 F3

Microprogram Sequencer

• The microprogram sequencer selects the next
address in control memory from which a
microinstruction is to be fetched.

• Depending on the condition and on the branching
type, it will be:
– an external (mapped) address
– the next microinstruction
– a return from a subroutine
– the address indicated in the microinstruction.

Microprogram Sequencer For A Control Memory

Input
Logic

I0
I1
T

3 2 1 0
S1
S0

MUX1 SBR

External
(MAP)

Incrementer

CARClock

L

MUX2
Select

1
I
S
Z

Test

Control memory

Microops CD BR AD

Input Logic Truth Table For A
Microprogrammed Sequencer

011x1111

001x0101

11011010

00001010

01010000

00000000

LS0S1TI0I1

BR Field Input MUX 1 Load SBR

Next address

Specified addr.

Subroutine ret.

Ext. addr.

